
dnsdist

PowerDNS.COM BV

Apr 25, 2024

CONTENTS

1 dnsdist Overview 1
1.1 Running dnsdist . 1
1.2 Questions, requests or comments? . 1

2 Installing dnsdist 3
2.1 Installing from Packages . 3

2.1.1 Debian . 3
2.1.2 Red Hat . 3
2.1.3 FreeBSD . 3

2.2 Installing from Source . 3
2.2.1 From tarball . 4
2.2.2 From git . 4
2.2.3 OS Specific Instructions . 5
2.2.4 Build options . 5

3 Quickstart Guide 7
3.1 Running in the Foreground . 7
3.2 dnsdist Console and Configuration . 7

3.2.1 Changing Server Settings . 8
3.3 Restricting Access . 9
3.4 Securing the path to the backend . 9
3.5 More Information . 9

4 Running and Configuring dnsdist 11
4.1 Running as unprivileged user . 11
4.2 Understanding how queries are forwarded to backends . 11

5 Packet Policies 13
5.1 Packet Actions . 13

5.1.1 Examples . 13
5.2 Managing Rules . 14

6 Statistics 15
6.1 acl-drops . 15
6.2 cache-hits . 15
6.3 cache-misses . 15
6.4 cpu-iowait . 16
6.5 cpu-steal . 16
6.6 cpu-sys-msec . 16
6.7 cpu-user-msec . 16
6.8 doh-query-pipe-full . 16
6.9 doh-response-pipe-full . 16
6.10 doq-response-pipe-full . 16
6.11 downstream-send-errors . 16
6.12 downstream-timeouts . 16

i

6.13 dyn-block-nmg-size . 16
6.14 dyn-blocked . 17
6.15 empty-queries . 17
6.16 fd-usage . 17
6.17 frontend-noerror . 17
6.18 frontend-nxdomain . 17
6.19 frontend-servfail . 17
6.20 latency-avg100 . 17
6.21 latency-avg1000 . 17
6.22 latency-avg10000 . 17
6.23 latency-avg1000000 . 17
6.24 latency-bucket . 18
6.25 latency-count . 18
6.26 latency-doh-avg100 . 18
6.27 latency-doh-avg1000 . 18
6.28 latency-doh-avg10000 . 18
6.29 latency-doh-avg1000000 . 18
6.30 latency-doq-avg100 . 18
6.31 latency-doq-avg1000 . 18
6.32 latency-doq-avg10000 . 18
6.33 latency-doq-avg1000000 . 18
6.34 latency-dot-avg100 . 19
6.35 latency-dot-avg1000 . 19
6.36 latency-dot-avg10000 . 19
6.37 latency-dot-avg1000000 . 19
6.38 latency-slow . 19
6.39 latency-sum . 19
6.40 latency-tcp-avg100 . 19
6.41 latency-tcp-avg1000 . 19
6.42 latency-tcp-avg10000 . 19
6.43 latency-tcp-avg1000000 . 19
6.44 latency0-1 . 20
6.45 latency1-10 . 20
6.46 latency10-50 . 20
6.47 latency50-100 . 20
6.48 latency100-1000 . 20
6.49 no-policy . 20
6.50 noncompliant-queries . 20
6.51 noncompliant-responses . 20
6.52 outgoing-doh-query-pipe-full . 20
6.53 proxy-protocol-invalid . 20
6.54 queries . 21
6.55 rdqueries . 21
6.56 real-memory-usage . 21
6.57 responses . 21
6.58 rule-drop . 21
6.59 rule-nxdomain . 21
6.60 rule-refused . 21
6.61 rule-servfail . 21
6.62 rule-truncated . 21
6.63 security-status . 22
6.64 self-answered . 22
6.65 servfail-responses . 22
6.66 tcp-cross-protocol-query-pipe-full . 22
6.67 tcp-cross-protocol-response-pipe-full . 22
6.68 tcp-listen-overflows . 22
6.69 tcp-query-pipe-full . 22
6.70 trunc-failures . 22

ii

6.71 udp-in-csum-errors . 22
6.72 udp-in-errors . 23
6.73 udp-noport-errors . 23
6.74 udp-recvbuf-errors . 23
6.75 udp-sndbuf-errors . 23
6.76 udp6-in-csum-errors . 23
6.77 udp6-in-errors . 23
6.78 udp6-noport-errors . 23
6.79 udp6-recvbuf-errors . 23
6.80 udp6-sndbuf-errors . 24
6.81 uptime . 24

7 Caching Responses 25

8 Exporting statistics via Carbon 27
8.1 Setting up a carbon export . 27
8.2 Query counters . 27

9 Working with the dnsdist Console 29

10 DNS-over-HTTP/3 (DoH3) 31
10.1 Incoming . 31

10.1.1 Advertising DNS over HTTP/3 support . 31

11 DNS-over-HTTPS (DoH) 33
11.1 Incoming . 33

11.1.1 Advertising DNS over HTTP/3 support . 34
11.1.2 Custom responses . 34
11.1.3 DNS over HTTP . 34
11.1.4 HTTP/1 support . 34
11.1.5 Internal design . 35
11.1.6 Investigating issues . 36

11.2 Outgoing . 36
11.2.1 Internal design . 36

12 DNS-over-QUIC (DoQ) 37
12.1 Incoming . 37

13 DNS-over-TLS 39
13.1 Incoming . 39
13.2 Outgoing . 39
13.3 Investigating issues . 40

14 DNSCrypt 41

15 Configuring Downstream Servers 43
15.1 Healthcheck . 43

15.1.1 Lazy health-checking . 44
15.2 Source address selection . 45
15.3 Securing the channel . 46
15.4 Securing the path to the backend . 46

16 Dynamic Rule Generation 47
16.1 DynBlockRulesGroup . 48
16.2 Rate rules and size of the ring buffers . 49

17 Guides 51
17.1 Built-in webserver . 51

17.1.1 Security of the Webserver . 51
17.1.2 dnsdist API . 51

iii

17.2 Server pools . 73
17.3 Loadbalancing and Server Policies . 74

17.3.1 Built-in Policies . 74
17.3.2 Lua server policies . 76
17.3.3 ServerPolicy Objects . 77
17.3.4 Functions . 77

18 Advanced Topics 81
18.1 Access Control . 81

18.1.1 Listening on different addresses . 81
18.1.2 Modifying the ACL . 82

18.2 Passing the source address to the backend . 82
18.2.1 Using EDNS Client Subnet . 82
18.2.2 X-Proxied-For . 83
18.2.3 Proxy Protocol . 83
18.2.4 Influence on caching . 84

18.3 TeeAction: copy the DNS traffic stream . 84
18.4 Lua actions in rules . 85
18.5 Runtime-modifiable IP address sets . 85
18.6 Rules for traffic exceeding QPS limits . 86
18.7 eBPF Socket Filtering . 87

18.7.1 Requirements . 89
18.7.2 External program, maps and XDP filtering . 89

18.8 Performance Tuning . 90
18.8.1 UDP and incoming DNS over HTTPS . 90
18.8.2 AF_XDP / XSK . 92
18.8.3 UDP buffer sizes . 92
18.8.4 Outgoing DoH . 92
18.8.5 TCP and DNS over TLS . 92
18.8.6 TLS performance . 94
18.8.7 DNS over QUIC . 94
18.8.8 Rules and Lua . 95
18.8.9 Lock contention and sharding . 95
18.8.10 Memory usage . 96
18.8.11 Firewall connection tracking . 96
18.8.12 Network interface receive queues . 96

18.9 SNMP support . 97
18.10 AXFR, IXFR and NOTIFY . 110

18.10.1 In front of primaries . 110
18.10.2 In front of secondaries . 110

18.11 Running multiple instances . 111
18.11.1 Using systemd . 111

18.12 Out-of-order . 111
18.13 OCSP Stapling . 111

18.13.1 Local PKI . 112
18.13.2 Certificate signed by an external authority . 112
18.13.3 Testing . 113

18.14 TLS Certificates Management . 113
18.14.1 Password-protected PKCS12 files . 113
18.14.2 Reloading certificates . 114
18.14.3 TLS sessions . 114
18.14.4 OCSP stapling . 114

18.15 TLS Sessions Management . 114
18.15.1 TLS sessions . 114
18.15.2 Keys management for incoming connections in dnsdist 115
18.15.3 Content of the STEK file . 116
18.15.4 Sessions management for outgoing connections . 117

18.16 Internal Design . 117

iv

18.16.1 UDP design . 117
18.16.2 TCP / DoT design . 118
18.16.3 DNS over HTTP/2 design . 118
18.16.4 DNS over HTTP/3 design . 120
18.16.5 DoQ design . 120

18.17 Asynchronous processing . 121
18.18 AF_XDP / XSK . 122

18.18.1 Performance . 124

19 Reference Guides 127
19.1 Rule Actions . 127
19.2 Configuration Reference . 143

19.2.1 Functions and Types . 144
19.2.2 Global configuration . 144
19.2.3 Servers . 157
19.2.4 Pools . 167
19.2.5 Client State . 170
19.2.6 Status, Statistics and More . 171
19.2.7 Dynamic Blocks . 176
19.2.8 Outgoing TLS tickets cache management . 185
19.2.9 Other functions . 185

19.3 Constants . 193
19.3.1 OPCode . 193
19.3.2 DNSClass . 193
19.3.3 RCode . 193
19.3.4 EDNSOptionCode . 194
19.3.5 DNS Packet Sections . 194
19.3.6 DNSAction . 195
19.3.7 DNSQType . 195
19.3.8 DNSResponseAction . 196

19.4 ComboAddress . 196
19.5 Netmask . 197
19.6 NetmaskGroup . 197
19.7 DNSName objects . 198

19.7.1 Functions and methods of a DNSName . 198
19.8 DNSNameSet objects . 199

19.8.1 Functions and methods of a DNSNameSet . 199
19.9 The DNSQuestion (dq) object . 200
19.10 DNSResponse object . 206
19.11 DNSHeader (dh) object . 207
19.12 EDNSOptionView object . 208
19.13 AsynchronousObject object . 209
19.14 eBPF functions and objects . 209
19.15 DNSCrypt objects and functions . 212

19.15.1 Certificates . 213
19.15.2 Certificate Pairs . 214
19.15.3 Context . 214

19.16 DNS Parser . 215
19.16.1 DNSPacketOverlay . 216

19.17 DNSRecord object . 216
19.18 Protobuf Logging Reference . 217
19.19 dnstap Logging Reference . 219
19.20 Carbon export . 220
19.21 SNMP reporting . 221
19.22 Tuning related functions . 221
19.23 Key Value Store functions and objects . 224
19.24 Logging . 227
19.25 Webserver-related objects . 227

v

19.26 Rules management . 228
19.26.1 Incoming queries . 228
19.26.2 Cache misses . 229
19.26.3 Responses . 231
19.26.4 Cache hits . 232
19.26.5 Cache inserted . 233
19.26.6 Self-answered responses . 234
19.26.7 XFR . 235
19.26.8 Convenience Functions . 237

19.27 Rule selectors . 237
19.27.1 Combining Rules . 244
19.27.2 Objects . 244

19.28 SVCRecordParameters . 244
19.29 Custom Metrics . 245
19.30 XSK / AF_XDP functions and objects . 246

20 Manual Pages 249
20.1 dnsdist . 249

20.1.1 Synopsis . 249
20.1.2 Description . 249
20.1.3 Scope . 249
20.1.4 Options . 249
20.1.5 Bugs . 250
20.1.6 Resources . 250

21 Changelog 251
21.1 1.9.3 . 251

21.1.1 Bug Fixes . 251
21.2 1.9.2 . 251

21.2.1 Improvements . 251
21.2.2 Bug Fixes . 251

21.3 1.9.1 . 252
21.3.1 Bug Fixes . 252

21.4 1.9.0 . 252
21.4.1 Improvements . 252
21.4.2 Bug Fixes . 252

21.5 1.9.0-rc1 . 252
21.5.1 New Features . 252
21.5.2 Improvements . 253
21.5.3 Bug Fixes . 253

21.6 1.8.3 . 253
21.6.1 Improvements . 253
21.6.2 Bug Fixes . 253

21.7 1.9.0-alpha4 . 254
21.7.1 New Features . 254
21.7.2 Improvements . 254
21.7.3 Bug Fixes . 255

21.8 1.9.0-alpha3 . 255
21.8.1 New Features . 255
21.8.2 Improvements . 255
21.8.3 Bug Fixes . 255
21.8.4 misc . 255

21.9 1.9.0-alpha2 . 255
21.10 1.8.2 . 256

21.10.1 Bug Fixes . 256
21.11 1.7.5 . 256

21.11.1 Bug Fixes . 256
21.12 1.9.0-alpha1 . 256

vi

21.12.1 New Features . 256
21.12.2 Improvements . 256
21.12.3 Removals . 257

21.13 1.8.1 . 257
21.13.1 New Features . 257
21.13.2 Improvements . 257
21.13.3 Bug Fixes . 257

21.14 1.7.4 . 258
21.14.1 New Features . 258
21.14.2 Bug Fixes . 258

21.15 1.8.0 . 258
21.15.1 Bug Fixes . 258

21.16 1.8.0-rc3 . 259
21.16.1 Improvements . 259
21.16.2 Bug Fixes . 259

21.17 1.8.0-rc2 . 259
21.17.1 Improvements . 259
21.17.2 Bug Fixes . 259

21.18 1.8.0-rc1 . 259
21.18.1 New Features . 260
21.18.2 Improvements . 261
21.18.3 Bug Fixes . 263
21.18.4 Removals . 263

21.19 1.7.3 . 264
21.19.1 Improvements . 264

21.20 1.7.2 . 264
21.20.1 Improvements . 264
21.20.2 Bug Fixes . 264

21.21 1.7.1 . 264
21.21.1 Improvements . 264
21.21.2 Bug Fixes . 265

21.22 1.7.0 . 265
21.22.1 Bug Fixes . 265

21.23 1.7.0-rc1 . 265
21.23.1 Improvements . 265
21.23.2 Bug Fixes . 265

21.24 1.7.0-beta2 . 266
21.24.1 Improvements . 266
21.24.2 Bug Fixes . 266

21.25 1.7.0-beta1 . 266
21.25.1 New Features . 266
21.25.2 Improvements . 266
21.25.3 Bug Fixes . 267

21.26 1.7.0-alpha2 . 267
21.26.1 New Features . 267
21.26.2 Improvements . 267
21.26.3 Bug Fixes . 267

21.27 1.7.0-alpha1 . 268
21.27.1 New Features . 268
21.27.2 Improvements . 268
21.27.3 Bug Fixes . 268

21.28 1.6.1 . 269
21.28.1 New Features . 269
21.28.2 Bug Fixes . 269

21.29 1.6.0 . 269
21.30 1.5.2 . 269

21.30.1 Bug Fixes . 269
21.31 1.6.0-rc2 . 270

vii

21.31.1 Improvements . 270
21.31.2 Bug Fixes . 270

21.32 1.6.0-rc1 . 270
21.32.1 Improvements . 270
21.32.2 Bug Fixes . 270

21.33 1.6.0-alpha3 . 270
21.33.1 Improvements . 270
21.33.2 Bug Fixes . 271

21.34 1.6.0-alpha2 . 271
21.34.1 New Features . 271
21.34.2 Improvements . 271
21.34.3 Bug Fixes . 271

21.35 1.6.0-alpha1 . 271
21.35.1 New Features . 272
21.35.2 Improvements . 272
21.35.3 Bug Fixes . 273
21.35.4 Removals . 273

21.36 1.5.1 . 273
21.36.1 Improvements . 274
21.36.2 Bug Fixes . 274

21.37 1.5.0 . 274
21.37.1 Improvements . 274
21.37.2 Bug Fixes . 274

21.38 1.5.0-rc4 . 274
21.38.1 Bug Fixes . 274

21.39 1.5.0-rc3 . 274
21.39.1 New Features . 275
21.39.2 Improvements . 275
21.39.3 Bug Fixes . 275

21.40 1.5.0-rc2 . 275
21.40.1 Improvements . 275
21.40.2 Bug Fixes . 275

21.41 1.5.0-rc1 . 276
21.41.1 Improvements . 276
21.41.2 Bug Fixes . 276

21.42 1.5.0-alpha1 . 276
21.42.1 New Features . 276
21.42.2 Improvements . 276
21.42.3 Bug Fixes . 277

21.43 1.4.0 . 278
21.43.1 Improvements . 278
21.43.2 Bug Fixes . 278
21.43.3 misc . 278

21.44 1.4.0-rc5 . 278
21.44.1 Improvements . 278
21.44.2 Bug Fixes . 278

21.45 1.4.0-rc4 . 278
21.45.1 New Features . 278
21.45.2 Improvements . 279
21.45.3 Bug Fixes . 279

21.46 1.4.0-rc3 . 279
21.46.1 Improvements . 279
21.46.2 Bug Fixes . 280

21.47 1.4.0-rc2 . 280
21.47.1 New Features . 280
21.47.2 Improvements . 280
21.47.3 misc . 280

21.48 1.4.0-rc1 . 280

viii

21.48.1 New Features . 280
21.48.2 Improvements . 281
21.48.3 Bug Fixes . 281

21.49 1.4.0-beta1 . 282
21.49.1 New Features . 282
21.49.2 Improvements . 282
21.49.3 Bug Fixes . 282

21.50 1.4.0-alpha2 . 282
21.50.1 New Features . 282
21.50.2 Improvements . 282
21.50.3 Bug Fixes . 282

21.51 1.4.0-alpha1 . 283
21.51.1 New Features . 283
21.51.2 Improvements . 283
21.51.3 Bug Fixes . 284

21.52 1.3.3 . 284
21.52.1 New Features . 284
21.52.2 Improvements . 285
21.52.3 Bug Fixes . 285

21.53 1.3.2 . 285
21.53.1 Bug Fixes . 285

21.54 1.3.1 . 285
21.54.1 New Features . 286
21.54.2 Improvements . 286
21.54.3 Bug Fixes . 287

21.55 1.3.0 . 287
21.55.1 New Features . 287
21.55.2 Improvements . 288
21.55.3 Bug Fixes . 288
21.55.4 Removals . 289

21.56 1.2.1 . 289
21.56.1 New Features . 289
21.56.2 Improvements . 289
21.56.3 Bug Fixes . 289

21.57 1.2.0 . 289
21.57.1 New Features . 289
21.57.2 Improvements . 290
21.57.3 Bug Fixes . 291
21.57.4 Removals . 292
21.57.5 misc . 292

21.58 1.1.0 . 292
21.58.1 Improvements . 292
21.58.2 Bug fixes . 292

21.59 1.1.0-beta2 . 292
21.59.1 New features . 292
21.59.2 Improvements . 293
21.59.3 Bug fixes . 293

21.60 1.1.0-beta1 . 293
21.60.1 New features . 293
21.60.2 Improvements . 294
21.60.3 Bug fixes . 294

21.61 1.0.0 . 295
21.61.1 Improvements . 295
21.61.2 Bug fixes . 295

21.62 1.0.0-beta1 . 295
21.62.1 New features . 295
21.62.2 Improvements . 296
21.62.3 Bug fixes . 296

ix

21.63 1.0.0-alpha2 . 296
21.63.1 New features . 296
21.63.2 Bug fixes . 297
21.63.3 Web interface . 297
21.63.4 Various documentation updates and minor cleanups: 297

21.64 1.0.0-alpha1 . 298

22 Upgrade Guide 299
22.1 1.8.x to 1.9.0 . 299
22.2 1.7.x to 1.8.0 . 299
22.3 1.7.0 to 1.7.1 . 300
22.4 1.6.x to 1.7.0 . 300
22.5 1.5.x to 1.6.0 . 300
22.6 1.4.x to 1.5.0 . 301
22.7 1.3.x to 1.4.0 . 301
22.8 1.3.2 to 1.3.3 . 302
22.9 1.2.x to 1.3.x . 302
22.10 1.1.0 to 1.2.0 . 303

23 Security Advisories 305
23.1 PowerDNS Security Advisory 2017-01 for dnsdist: Crafted backend responses can cause a denial

of service . 305
23.2 PowerDNS Security Advisory 2017-02 for dnsdist: Alteration of ACLs via API authentication

bypass . 305
23.3 PowerDNS Security Advisory for dnsdist 2018-08: Record smuggling when adding ECS or XPF 306

24 PowerDNS Security Policy 307
24.1 YesWeHack . 307
24.2 Disclosure Policy . 307

25 Glossary 309

26 PowerDNS/dnsdist license 311

27 End of life statements 317

HTTP Routing Table 319

Index 321

x

CHAPTER

ONE

DNSDIST OVERVIEW

dnsdist is a highly DNS-, DoS- and abuse-aware loadbalancer. Its goal in life is to route traffic to the best server,
delivering top performance to legitimate users while shunting or blocking abusive traffic.

dnsdist is dynamic, its configuration language is Lua and it can be changed at runtime, and its statistics can be
queried from a console-like interface or an HTTP API.

A configuration to balance DNS queries to several backend servers:

newServer({address="2620:fe::fe", qps=1})
newServer({address="2620:fe::9", qps=1})
newServer({address="9.9.9.9", qps=1})
newServer({address="2001:db8::1", qps=10})
newServer({address="[2001:db8::2]:5300", name="dns1", qps=10})
newServer("192.0.2.1")
setServerPolicy(firstAvailable) -- first server within its QPS limit

1.1 Running dnsdist

If you have not worked with dnsdist before, here are some resources to get you going:

• Install dnsdist.

• To get a feeling for how it works, see the Quickstart Guide.

• Running and Configuring dnsdist

• The Packet Policies page covers how to apply policies to traffic

• There are several Guides about the different features and options

• Advanced Topics describes some of the more advanced features

• Reference Guides has all the configuration and object information

1.2 Questions, requests or comments?

There are several ways to reach us:

• The dnsdist mailing-list

• #powerdns on irc.oftc.net

The Open-Xchange/PowerDNS company can provide help or support you in private as well. Please contact Open-
Xchange.

This documentation is also available as a PDF document.

1

http://lua.org
https://mailman.powerdns.com/mailman/listinfo/dnsdist
irc://irc.oftc.net/#powerdns
https://www.open-xchange.com/about-ox/contact-us/
https://www.open-xchange.com/about-ox/contact-us/

dnsdist

2 Chapter 1. dnsdist Overview

CHAPTER

TWO

INSTALLING DNSDIST

dnsdist only runs on UNIX-like systems and there are several ways to install dnsdist. The fastest way is using
packages, either from your own operating system vendor or supplied by the PowerDNS project. Building from
source is also supported.

2.1 Installing from Packages

If dnsdist is available in your operating system’s software repositories, install it from there. However, the version of
dnsdist in the repositories might be an older version that might not have a feature that was added in a later version.
Or you might want to be brave and try a development snapshot from the master branch. PowerDNS provides
software repositories for the most popular distributions. Visit https://repo.powerdns.com for more information
and installation instructions.

2.1.1 Debian

For Debian and its derivatives (like Ubuntu) installing the dnsdist package should do it:

apt-get install -y dnsdist

2.1.2 Red Hat

For Red Hat, CentOS and its derivatives, dnsdist is available in EPEL:

yum install -y epel-release
yum install -y dnsdist

2.1.3 FreeBSD

dnsdist is also available in FreeBSD ports.

2.2 Installing from Source

In order to compile dnsdist, a modern compiler with C++ 2017 support and GNU make are required. dnsdist
depends on the following libraries:

• Boost

• Lua 5.1+ or LuaJit

• Editline (libedit)

• libfstrm (optional, dnstap support)

3

https://repo.powerdns.com
https://fedoraproject.org/wiki/EPEL
http://www.freshports.org/dns/dnsdist/
http://boost.org/
http://www.lua.org/
http://luajit.org/
http://thrysoee.dk/editline/
https://github.com/farsightsec/fstrm

dnsdist

• GnuTLS (optional, DoT and outgoing DoH support)

• libbpf and libxdp (optional, XSK/AF_XDP support)

• libcap (optional, capabilities support)

• libh2o (optional, incoming DoH support, deprecated in 1.9.0 in favor of nghttp2)

• libsodium (optional, DNSCrypt and console encryption support)

• LMDB (optional, LMDB support)

• net-snmp (optional, SNMP support)

• nghttp2 (optional, outgoing DoH support)

• OpenSSL (optional, DoT and DoH support)

• protobuf (optional, not needed as of 1.6.0)

• quiche (optional, incoming DoQ support)

• re2 (optional)

• TinyCDB (optional, CDB support)

Should dnsdist be run on a system with systemd, it is highly recommended to have the systemd header
files (libsystemd-dev on Debian and systemd-devel on CentOS) installed to have dnsdist support
systemd-notify.

2.2.1 From tarball

Release tarballs are available from the downloads site, snapshot and pre-release tarballs can be found as well.

The release tarballs have detached PGP signatures, signed by one of these PGP keys:

• FBAE 0323 821C 7706 A5CA 151B DCF5 13FA 7EED 19F3

• D630 0CAB CBF4 69BB E392 E503 A208 ED4F 8AF5 8446

• 16E1 2866 B773 8C73 976A 5743 6FFC 3343 9B0D 04DF

• 990C 3D0E AC7C 275D C6B1 8436 EACA B90B 1963 EC2B

There is a PGP keyblock with these keys available on https://dnsdist.org/_static/dnsdist-keyblock.asc.

Older (1.0.x) releases can also be signed with one of the following keys:

• 1628 90D0 689D D12D D33E 4696 1C5E E990 D2E7 1575

• B76C D467 1C09 68BA A87D E61C 5E50 715B F2FF E1A7

• Untar the tarball and cd into the source directory

• Run ./configure

• Run make or gmake (on BSD)

2.2.2 From git

To compile from git, these additional dependencies are required:

• GNU Autoconf

• GNU Automake

• Ragel

dnsdist source code lives in the PowerDNS git repository but is independent of PowerDNS.

4 Chapter 2. Installing dnsdist

https://www.gnutls.org/
https://github.com/libbpf/libbpf
https://github.com/xdp-project/xdp-tools
https://sites.google.com/site/fullycapable/
https://github.com/h2o/h2o
https://download.libsodium.org/doc/
http://www.lmdb.tech/doc/
http://www.net-snmp.org/
https://nghttp2.org/
https://www.openssl.org/
https://developers.google.com/protocol-buffers/
https://github.com/cloudflare/quiche
https://github.com/google/re2
https://www.corpit.ru/mjt/tinycdb.html
https://downloads.powerdns.com/releases
https://downloads.powerdns.com/autobuilt_browser/#/dnsdist
https://pgp.mit.edu/pks/lookup?op=get&search=0xDCF513FA7EED19F3
https://pgp.mit.edu/pks/lookup?op=get&search=0xA208ED4F8AF58446
https://pgp.mit.edu/pks/lookup?op=get&search=0x6FFC33439B0D04DF
https://pgp.mit.edu/pks/lookup?op=get&search=0xEACAB90B1963EC2B
https://dnsdist.org/_static/dnsdist-keyblock.asc
https://pgp.mit.edu/pks/lookup?op=get&search=0x1C5EE990D2E71575
https://pgp.mit.edu/pks/lookup?op=get&search=0x5E50715BF2FFE1A7
http://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/automake/
http://www.colm.net/open-source/ragel/
https://github.com/PowerDNS/pdns

dnsdist

git clone https://github.com/PowerDNS/pdns.git
cd pdns/pdns/dnsdistdist
autoreconf -i
./configure
make

2.2.3 OS Specific Instructions

None, really.

2.2.4 Build options

Our configure script provides a fair number of options with regard to which features should be enabled, as
well as which libraries should be used. In addition to these options, more features can be disabled at compile-time
by defining the following symbols:

• DISABLE_BUILTIN_HTML removes the built-in web pages

• DISABLE_CARBON for carbon support

• DISABLE_COMPLETION for completion support in the console

• DISABLE_DELAY_PIPE removes the ability to delay UDP responses

• DISABLE_DEPRECATED_DYNBLOCK for legacy dynamic blocks not using the new
DynBlockRulesGroup interface

• DISABLE_DYNBLOCKS disables the new dynamic block interface

• DISABLE_ECS_ACTIONS to disable actions altering EDNS Client Subnet

• DISABLE_FALSE_SHARING_PADDING to disable the padding of atomic counters, which is inserted to
prevent false sharing but increases the memory use significantly

• DISABLE_HASHED_CREDENTIALS to disable password-hashing support

• DISABLE_LUA_WEB_HANDLERS for custom Lua web handlers support

• DISABLE_OCSP_STAPLING for OCSP stapling

• DISABLE_OPENSSL_ERROR_STRINGS to disable the loading of OpenSSL’s error strings, reducing the
memory use at the cost of human-readable error messages

• DISABLE_NPN for Next Protocol Negotiation, superseded by ALPN

• DISABLE_PROMETHEUS for prometheus

• DISABLE_PROTOBUF for protocol-buffer support, including dnstap

• DISABLE_RECVMMSG for recvmmsg support

• DISABLE_RULES_ALTERING_QUERIES to remove rules altering the content of queries

• DISABLE_SECPOLL for security polling

• DISABLE_WEB_CACHE_MANAGEMENT to disable cache management via the API

• DISABLE_WEB_CONFIG to disable accessing the configuration via the web interface

Additionally several Lua bindings can be removed when they are not needed, as they increase the memory required
during compilation and the size of the final binary:

• DISABLE_CLIENT_STATE_BINDINGS

• DISABLE_COMBO_ADDR_BINDINGS

• DISABLE_DNSHEADER_BINDINGS

2.2. Installing from Source 5

dnsdist

• DISABLE_DNSNAME_BINDINGS

• DISABLE_DOWNSTREAM_BINDINGS

• DISABLE_NETMASK_BINDINGS

• DISABLE_NON_FFI_DQ_BINDINGS

• DISABLE_PACKETCACHE_BINDINGS

• DISABLE_POLICIES_BINDINGS

• DISABLE_QPS_LIMITER_BINDINGS

• DISABLE_SUFFIX_MATCH_BINDINGS

• DISABLE_TOP_N_BINDINGS

Finally a build flag can be used to make use a single thread to handle all incoming UDP queries from clients, no
matter how many addLocal() directives are present in the configuration. It also moves the task of accepting
incoming TCP connections to the TCP workers themselves, removing the TCP acceptor threads. This option is
destined to resource-constrained environments where dnsdist needs to listen on several addresses, over several
interfaces, and one thread is enough to handle the traffic and therefore the overhead of using multiples threads for
that task does not make sense. This option can be enabled by setting USE_SINGLE_ACCEPTOR_THREAD.

6 Chapter 2. Installing dnsdist

CHAPTER

THREE

QUICKSTART GUIDE

This guide gives an overview of dnsdist features and operations.

3.1 Running in the Foreground

After installing dnsdist, the quickest way to start experimenting is launching it on the foreground with:

dnsdist -l 127.0.0.1:5300 9.9.9.9 2620:fe::fe 2620:fe::9

This will make dnsdist listen on IP address 127.0.0.1, port 5300 and forward all queries to the three listed IP
addresses, with a sensible balancing policy.

3.2 dnsdist Console and Configuration

Here is more complete configuration, save it to dnsdist.conf:

newServer({address="2001:db8::1", qps=1})
newServer({address="2001:db8::2", qps=1})
newServer({address="[2001:db8::3]:5300", qps=10})
newServer({address="2001:db8::4", name="dns1", qps=10})
newServer("192.0.2.1")
setServerPolicy(firstAvailable) -- first server within its QPS limit

The newServer() function is used to add a backend server to the configuration.

Now run dnsdist again, reading this configuration:

$ dnsdist -C dnsdist.conf --local=0.0.0.0:5300
Marking downstream [2001:db8::1]:53 as 'up'
Marking downstream [2001:db8::2]:53 as 'up'
Marking downstream [2001:db8::3]:5300 as 'up'
Marking downstream [2001:db8::4]:53 as 'up'
Marking downstream 192.0.2.1.:53 as 'up'
Listening on 0.0.0.0:5300
>

You can now send queries to port 5300, and get answers:

$ dig -t aaaa powerdns.com @127.0.0.1 -p 5300 +short +nocookie
2001:888:2000:1d::2

Note that dnsdist dropped us in a prompt above, where we can get some statistics:

7

dnsdist

> showServers()
Address State Qps Qlim Ord Wt Queries Drops
→˓Drate Lat Pools
0 [2001:db8::1]:53 up 0.0 1 1 1 1 0 0.
→˓0 0.0
1 [2001:db8::2]:53 up 0.0 1 1 1 0 0 0.
→˓0 0.0
2 [2001:db8::3]:5300 up 0.0 10 1 1 0 0 0.
→˓0 0.0
3 [2001:db8::4]:53 up 0.0 10 1 1 0 0 0.
→˓0 0.0
4 192.0.2.1:53 up 0.0 0 1 1 0 0 0.
→˓0 0.0
All 0.0 1 0

showServers() is usually one of the first commands you will use when logging into the console. More
advanced topics are covered in Working with the dnsdist Console.

Here we also see our configuration. 5 downstream servers have been configured, of which the first 4 have a QPS
limit (of 1, 1, 10 and 10 queries per second, respectively).

The final server has no limit, which we can easily test:

$ for a in {0..1000}; do dig powerdns.com @127.0.0.1 -p 5300 +noall +nocookie > /
→˓dev/null; done

> showServers()
Address State Qps Qlim Ord Wt Queries Drops
→˓Drate Lat Pools
0 [2001:db8::1]:53 up 1.0 1 1 1 7 0 0.
→˓0 1.6
1 [2001:db8::2]:53 up 1.0 1 1 1 6 0 0.
→˓0 0.6
2 [2001:db8::3]:5300 up 10.3 10 1 1 64 0 0.
→˓0 2.4
3 [2001:db8::4]:53 up 10.3 10 1 1 63 0 0.
→˓0 2.4
4 192.0.2.1:53 up 125.8 0 1 1 671 0 0.
→˓0 0.4
All 145.0 811 0

Note that the first 4 servers were all limited to near their configured QPS, and that our final server was taking up
most of the traffic. No queries were dropped, and all servers remain up.

3.2.1 Changing Server Settings

The servers from showServers() are numbered, getServer() is used to get this Server object to manip-
ulate it.

To force a server down, try Server:setDown():

> getServer(0):setDown()
> showServers()
Address State Qps Qlim Ord Wt Queries Drops
→˓Drate Lat Pools
0 [2001:db8::1]:53 DOWN 0.0 1 1 1 8 0 0.
→˓0 0.0
...

The DOWN in all caps means it was forced down. A lower case down would’ve meant that dnsdist itself had con-
cluded the server was down. Similarly, Server:setUp() forces a server to be up, and Server:setAuto()
returns it to the default availability-probing.

8 Chapter 3. Quickstart Guide

dnsdist

To change the QPS for a server, use Server:setQPS():

> getServer(0):setQPS(1000)

3.3 Restricting Access

By default, dnsdist listens on 127.0.0.1 (not ::1!), port 53.

To listen on a different address, use the -l command line option (useful for testing in the foreground), or use
setLocal() and addLocal() in the configuration file:

setLocal('192.0.2.53') -- Listen on 192.0.2.53, port 53
addLocal('[::1]:5300') -- Also listen on ::1, port 5300

Before packets are processed they have to pass the ACL, which helpfully defaults to RFC 1918 private IP space.
This prevents us from easily becoming an open DNS resolver.

Adding network ranges to the ACL is done with the setACL() and addACL() functions:

setACL({'192.0.2.0/28', '2001:db8:1::/56'}) -- Set the ACL to only allow these
→˓subnets
addACL('2001:db8:2::/56') -- Add this subnet to the existing ACL

3.4 Securing the path to the backend

dnsdist has always been designed as a load-balancer placed in front of authoritative or recursive servers, assuming
that the network path between dnsdist and these servers is trusted.

If dnsdist is instead intended to be deployed in such a way that the path to its backend is not secure, the UDP
protocol should not be used, and ‘TCP-only’, DNS over TLS and DNS over HTTPS protocols used instead, as
supported since 1.7.0.

For more details, please look at the Configuring Downstream Servers guide.

3.5 More Information

Following this quickstart guide allowed you to set up a basic balancing dnsdist instance. However, dnsdist is
much more powerful. See the Guides and/or the Advanced Topics sections on how to shape, shut and otherwise
manipulate DNS traffic.

3.3. Restricting Access 9

https://tools.ietf.org/html/rfc1918.html

dnsdist

10 Chapter 3. Quickstart Guide

CHAPTER

FOUR

RUNNING AND CONFIGURING DNSDIST

dnsdist is meant to run as a daemon. As such, distribution native packages know how to stop/start themselves
using operating system services.

It is configured with a configuration file called dnsdist.conf The default path to this file is determined by the
SYSCONFDIR variable during compilation. Most likely this path is /etc/dnsdist, /etc or /usr/local/
etc/, dnsdist will tell you on startup which file it reads.

dnsdist is designed to (re)start almost instantly. But to prevent downtime when changing configuration, the console
(see Working with the dnsdist Console) can be used for live configuration.

Issuing delta() on the console will print the changes to the configuration that have been made since startup:

> delta()
-- Wed Feb 22 2017 11:31:44 CET
addLocal('127.0.0.1:5301', false)
-- Wed Feb 22 2017 12:03:48 CET
addACL('192.0.2.1/8')
-- Wed Feb 22 2017 12:05:51 CET
addACL('2001:db8::1')

These commands can be copied to the configuration file, should they need to persist after a restart.

4.1 Running as unprivileged user

dnsdist can drop privileges using the --uid and --gid command line switches to ensure it does not run with
root privileges. Note that dnsdist drops its privileges after parsing its startup configuration and binding its
listening and initial newServer() sockets as user root. It is highly recommended to create a system user and
group for dnsdist. Note that most packaged versions of dnsdist already create this user.

4.2 Understanding how queries are forwarded to backends

Initially dnsdist tried to forward a query to the backend using the same protocol than the client used to contact
dnsdist: queries received over UDP were forwarded over UDP, and the same for TCP. When incoming DNSCrypt
and DNS over TLS support were added, the same logic was applied, so DoT queries are forwarded over TCP. For
DNS over HTTPS, UDP was selected instead for performance reason, breaking with the existing logic.

Before 1.7.0, which introduced TCP fallback, that meant that there was a potential issue with very large answers
and DNS over HTTPS, requiring careful configuration of the path between dnsdist and the backend. More infor-
mation about that is available in the DNS over HTTPS section.

In addition to TCP fallback for DoH, 1.7.0 introduced three new notions:

• TCP-only backends, for which queries will always forwarded over a TCP connection (see the tcpOnly
parameter of newServer())

11

dnsdist

• DNS over HTTPS backends, for which queries are forwarded over a DNS over HTTPS connection (see the
dohPath parameter of newServer())

• and DNS over TLS backends, for which queries are forwarded over a DNS over TLS connection (see the tls
parameter of newServer())

To sum it up:

Incoming Outgoing (regu-
lar)

Outgoing (TCP-only,
1.7+)

Outgoing (TLS,
1.7+)

Outgoing (DoH,
1.7+)

UDP UDP TCP TLS DoH
TCP TCP TCP TLS DoH
DNSCrypt
UDP

UDP TCP TLS DoH

DNSCrypt
TCP

TCP TCP TLS DoH

DoT TCP TCP TLS DoH
DoH UDP TCP TLS DoH
DoQ TCP TCP TLS DoH
DoH3 TCP TCP TLS DoH

12 Chapter 4. Running and Configuring dnsdist

CHAPTER

FIVE

PACKET POLICIES

dnsdist works in essence like any other loadbalancer:

It receives packets on one or several addresses it listens on, and determines whether it will process this packet
based on the Access Control. Should the packet be processed, dnsdist attempts to match any of the configured
rules in order and when one matches, the associated action is performed.

These rule and action combinations are considered policies. The complete list of selectors (rules) can be found in
Rule selectors, and the list of actions in Rule Actions.

5.1 Packet Actions

Each packet can be:

• Dropped

• Turned into an answer directly

• Forwarded to a downstream server

• Modified and forwarded to a downstream and be modified back

• Be delayed

This decision can be taken at different times during the forwarding process. All packets not handled by an explicit
action are forwarded to a downstream server in the default pool.

5.1.1 Examples

Rules for traffic exceeding QPS limits

Traffic that exceeds a QPS limit, in total or per IP (subnet) can be matched by a rule.

For example:

13

dnsdist

addAction(MaxQPSIPRule(5, 32, 48), DelayAction(100))

This measures traffic per IPv4 address and per /48 of IPv6, and if traffic for such an address (range) exceeds 5 qps,
it gets delayed by 100ms. (Please note: DelayAction() can only delay UDP traffic).

As another example:

addAction(MaxQPSIPRule(5), SetNoRecurseAction())

This strips the Recursion Desired (RD) bit from any traffic per IPv4 or IPv6 /64 that exceeds 5 qps. This means
any those traffic bins is allowed to make a recursor do ‘work’ for only 5 qps.

If this is not enough, try:

addAction(MaxQPSIPRule(5), DropAction())

or:

addAction(AndRule{MaxQPSIPRule(5), TCPRule(false)}, TCAction())

This will respectively drop traffic exceeding that 5 QPS limit per IP or range, or return it with TC=1, forcing
clients to fall back to TCP.

In that last one, note the use of TCPRule(). Without it, clients would get TC=1 even if they correctly fell back
to TCP.

To turn this per IP or range limit into a global limit, use NotRule(MaxQPSRule(5000)) instead of
MaxQPSIPRule().

Regular Expressions

RegexRule() matches a regular expression on the query name, and it works like this:

addAction(RegexRule("[0-9]{5,}"), DelayAction(750)) -- milliseconds
addAction(RegexRule("[0-9]{4,}\\.example$"), DropAction())

This delays any query for a domain name with 5 or more consecutive digits in it. The second rule drops anything
with more than 4 consecutive digits within a .example domain.

Note that the query name is presented without a trailing dot to the regex. The regex is applied case insensitively.

Alternatively, if compiled in, RE2Rule() provides similar functionality, but against libre2.

Note that to check if a name is in a list of domains, QNameSuffixRule() is preferred over complex regular
expressions or multiple instances of RegexRule().

5.2 Managing Rules

Active Rules can be shown with showRules() and removed with rmRule():

> addAction("h4xorbooter.xyz.", QPSAction(10))
> addAction({"130.161.0.0/16", "145.14.0.0/16"} , QPSAction(20))
> addAction({"nl.", "be."}, QPSAction(1))
> showRules()
Matches Rule Action
0 0 h4xorbooter.xyz. qps limit to 10
1 0 130.161.0.0/16, 145.14.0.0/16 qps limit to 20
2 0 nl., be. qps limit to 1

See Rules management for more information.

14 Chapter 5. Packet Policies

CHAPTER

SIX

STATISTICS

dnsdist keeps statistics on the queries it receives and send out. They can be accessed in different ways:

• via the console (see Working with the dnsdist Console), using dumpStats() for the general ones,
showServers() for the ones related to the backends, showBinds() for the frontends, getPool(“pool
name”):getCache():printStats() for the ones related to a specific cache and so on

• via the internal webserver (see Built-in webserver) which includes a Prometheus endpoint

• via Carbon / Graphite / Metronome export (see Exporting statistics via Carbon)

• via SNMP (see SNMP support)

To make sense of the statistics, the following relation should hold:

queries - noncompliant-queries = responses - noncompliant-responses + downstream-timeouts + no-
policy + rule-drop

Before 1.8.0, cache hits and self-answered responses were not accounted in the responses counters, so the relation
was:

responses - noncompliant-responses + cache-hits + downstream-timeouts + self-answered + no-policy
+ rule-drop

Note that packets dropped by eBPF (see eBPF Socket Filtering) are accounted for in the eBPF statistics, and do
not show up in the metrics described on this page.

Note that counters that come from /proc/net/ are operating system specific counters. They do not reset on
service restart and they are not only related to dnsdist. For more information on these counters, refer to Linux
networking counter documentation and the RFC1213.

6.1 acl-drops

The number of packets (or TCP messages) dropped because of the ACL. If a packet or message is dropped, it is
not counted in the queries statistic.

6.2 cache-hits

Number of times a response was sent using data found in the packet cache.

6.3 cache-misses

Number of times an answer was not found in the packet cache. Only counted if a packet cache was setup for the
selected pool.

15

https://www.kernel.org/doc/html/latest/networking/snmp_counter.html
https://www.kernel.org/doc/html/latest/networking/snmp_counter.html
https://datatracker.ietf.org/doc/html/rfc1213

dnsdist

6.4 cpu-iowait

New in version 1.5.0.

Time spent waiting for I/O to complete by the whole system, in units of USER_HZ.

6.5 cpu-steal

New in version 1.5.0.

Stolen time, which is the time spent by the whole system in other operating systems when running in a virtualized
environment, in units of USER_HZ.

6.6 cpu-sys-msec

Milliseconds spent by dnsdist in the “system” state.

6.7 cpu-user-msec

Milliseconds spent by dnsdist in the “user” state.

6.8 doh-query-pipe-full

Number of queries dropped because the internal DoH pipe was full.

6.9 doh-response-pipe-full

Number of responses dropped because the internal DoH pipe was full.

6.10 doq-response-pipe-full

Number of responses dropped because the internal DoQ pipe was full.

6.11 downstream-send-errors

Number of errors when sending a query to a backend.

6.12 downstream-timeouts

Number of queries not answer in time by a backend.

6.13 dyn-block-nmg-size

Number of dynamic blocks entries.

16 Chapter 6. Statistics

dnsdist

6.14 dyn-blocked

Number of queries dropped because of a dynamic block.

6.15 empty-queries

Number of empty queries received from clients. Every empty-query is also counted as a query.

6.16 fd-usage

Number of currently used file descriptors.

6.17 frontend-noerror

Number of NoError answers sent to clients.

6.18 frontend-nxdomain

Number of NXDomain answers sent to clients.

6.19 frontend-servfail

Number of ServFail answers sent to clients.

6.20 latency-avg100

Average response latency in microseconds of the last 100 packets received over UDP.

6.21 latency-avg1000

Average response latency in microseconds of the last 1000 packets received over UDP.

6.22 latency-avg10000

Average response latency in microseconds of the last 10000 packets received over UDP.

6.23 latency-avg1000000

Average response latency in microseconds of the last 1000000 packets received over UDP.

6.14. dyn-blocked 17

dnsdist

6.24 latency-bucket

Histogram of response time latencies for queries received over UDP.

6.25 latency-count

Number of queries contributing to response time histogram and latency sum.

6.26 latency-doh-avg100

Average response latency, in microseconds, of the last 100 packets received over DoH.

6.27 latency-doh-avg1000

Average response latency, in microseconds, of the last 1000 packets received over DoH.

6.28 latency-doh-avg10000

Average response latency, in microseconds, of the last 10000 packets received over DoH.

6.29 latency-doh-avg1000000

Average response latency, in microseconds, of the last 1000000 packets received over DoH.

6.30 latency-doq-avg100

Average response latency, in microseconds, of the last 100 packets received over DoQ.

6.31 latency-doq-avg1000

Average response latency, in microseconds, of the last 1000 packets received over DoQ.

6.32 latency-doq-avg10000

Average response latency, in microseconds, of the last 10000 packets received over DoQ.

6.33 latency-doq-avg1000000

Average response latency, in microseconds, of the last 1000000 packets received over DoQ.

18 Chapter 6. Statistics

dnsdist

6.34 latency-dot-avg100

Average response latency, in microseconds, of the last 100 packets received over DoT.

6.35 latency-dot-avg1000

Average response latency, in microseconds, of the last 1000 packets received over DoT.

6.36 latency-dot-avg10000

Average response latency, in microseconds, of the last 10000 packets received over DoT.

6.37 latency-dot-avg1000000

Average response latency, in microseconds, of the last 1000000 packets received over DoT.

6.38 latency-slow

Number of queries received over UDP answered in more than 1 second.

6.39 latency-sum

Total response time of all queries received over UDP combined in milliseconds since the start of dnsdist. Can
be used to calculate the average response time over all queries received over UDP.

6.40 latency-tcp-avg100

Average response latency, in microseconds, of the last 100 packets received over TCP.

6.41 latency-tcp-avg1000

Average response latency, in microseconds, of the last 1000 packets received over TCP.

6.42 latency-tcp-avg10000

Average response latency, in microseconds, of the last 10000 packets received over TCP.

6.43 latency-tcp-avg1000000

Average response latency, in microseconds, of the last 1000000 packets received over TCP.

6.34. latency-dot-avg100 19

dnsdist

6.44 latency0-1

Number of queries received over UDP answered in less than 1 ms.

6.45 latency1-10

Number of queries received over UDP answered in 1-10 ms.

6.46 latency10-50

Number of queries received over UDP answered in 10-50 ms.

6.47 latency50-100

Number of queries received over UDP answered in 50-100 ms.

6.48 latency100-1000

Number of queries received over UDP answered in 100-1000 ms.

6.49 no-policy

Number of queries dropped because no server was available.

6.50 noncompliant-queries

Number of queries dropped as non-compliant.

6.51 noncompliant-responses

Number of answers from a backend dropped as non-compliant.

6.52 outgoing-doh-query-pipe-full

Number of outgoing DoH queries dropped because the internal pipe used to distribute queries was full.

6.53 proxy-protocol-invalid

New in version 1.6.0.

Number of queries dropped because of an invalid Proxy Protocol header.

20 Chapter 6. Statistics

dnsdist

6.54 queries

Number of received queries.

6.55 rdqueries

Number of received queries with the recursion desired bit set.

6.56 real-memory-usage

Current memory usage.

6.57 responses

Number of response sent to clients.

Before 1.8.0, it was the number of responses received from backends, not accounting for cache hits or self-
answered responses.

6.58 rule-drop

Number of queries dropped because of a rule.

6.59 rule-nxdomain

Number of NXDomain answers returned because of a rule.

6.60 rule-refused

Number of Refused answers returned because of a rule.

6.61 rule-servfail

Number of ServFail answers returned because of a rule.

6.62 rule-truncated

New in version 1.6.0.

Number of truncated answers returned because of a rule.

6.54. queries 21

dnsdist

6.63 security-status

The security status of dnsdist. This is regularly polled.

• 0 = Unknown status or unreleased version

• 1 = OK

• 2 = Upgrade recommended

• 3 = Upgrade required (most likely because there is a known security issue)

6.64 self-answered

Number of self-answered responses.

6.65 servfail-responses

Number of servfail answers received from backends.

6.66 tcp-cross-protocol-query-pipe-full

Number of TCP cross-protocol queries dropped because the internal pipe used to distribute queries was full.

6.67 tcp-cross-protocol-response-pipe-full

Number of TCP cross-protocol responses dropped because the internal pipe used to distribute queries was full.

6.68 tcp-listen-overflows

New in version 1.6.0.

From /proc/net/netstat ListenOverflows.

6.69 tcp-query-pipe-full

Number of TCP queries dropped because the internal pipe used to distribute queries was full.

6.70 trunc-failures

Number of errors encountered while truncating an answer.

6.71 udp-in-csum-errors

New in version 1.7.0.

From /proc/net/snmp InErrors.

22 Chapter 6. Statistics

dnsdist

6.72 udp-in-errors

New in version 1.5.0.

From /proc/net/snmp InErrors.

6.73 udp-noport-errors

New in version 1.5.0.

From /proc/net/snmp NoPorts.

6.74 udp-recvbuf-errors

New in version 1.5.0.

From /proc/net/snmp RcvbufErrors.

6.75 udp-sndbuf-errors

New in version 1.5.0.

From /proc/net/snmp SndbufErrors.

6.76 udp6-in-csum-errors

New in version 1.7.0.

From /proc/net/snmp6 InErrors.

6.77 udp6-in-errors

New in version 1.7.0.

From /proc/net/snmp6 InErrors.

6.78 udp6-noport-errors

New in version 1.7.0.

From /proc/net/snmp6 NoPorts.

6.79 udp6-recvbuf-errors

New in version 1.7.0.

From /proc/net/snmp6 RcvbufErrors.

6.72. udp-in-errors 23

dnsdist

6.80 udp6-sndbuf-errors

New in version 1.7.0.

From /proc/net/snmp6 SndbufErrors.

6.81 uptime

Uptime of the dnsdist process, in seconds.

24 Chapter 6. Statistics

CHAPTER

SEVEN

CACHING RESPONSES

dnsdist implements a simple but effective packet cache, not enabled by default. It is enabled per-pool, but the
same cache can be shared between several pools. The first step is to define a cache with newPacketCache(),
then to assign that cache to the chosen pool, the default one being represented by the empty string:

pc = newPacketCache(10000, {maxTTL=86400, minTTL=0, temporaryFailureTTL=60,
→˓staleTTL=60, dontAge=false})
getPool(""):setCache(pc)

• The first parameter (10000) is the maximum number of entries stored in the cache, and is the only one
required. All the other parameters are optional and in seconds, except the last one which is a boolean.

• The second one (86400) is the maximum lifetime of an entry in the cache.

• The third one (0) is the minimum TTL an entry should have to be considered for insertion in the cache.

• The fourth one (60) is the TTL used for a Server Failure or a Refused response.

• The fifth one (60) is the TTL that will be used when a stale cache entry is returned.

• The sixth one is a boolean that when set to true, avoids reducing the TTL of cached entries.

For performance reasons the cache will pre-allocate buckets based on the maximum number of entries, so be
careful to set the first parameter to a reasonable value. Something along the lines of a dozen bytes per pre-
allocated entry can be expected on 64-bit. That does not mean that the memory is completely allocated up-front,
the final memory usage depending mostly on the size of cached responses and therefore varying during the cache’s
lifetime. Assuming an average response size of 512 bytes, a cache size of 10000000 entries on a 64-bit host with
8GB of dedicated RAM would be a safe choice.

The setStaleCacheEntriesTTL() directive can be used to allow dnsdist to use expired entries from the
cache when no backend is available. Only entries that have expired for less than n seconds will be used, and the
returned TTL can be set when creating a new cache with newPacketCache().

A reference to the cache affected to a specific pool can be retrieved with:

getPool("poolname"):getCache()

And removed with:

getPool("poolname"):unsetCache()

Cache usage stats (hits, misses, deferred inserts and lookups, collisions) can be displayed by using the
PacketCache:printStats() method:

getPool("poolname"):getCache():printStats()

The same values can also be returned as a Lua table, which is easier to work with from a script, using the
PacketCache:getStats() method.

Expired cached entries can be removed from a cache using the PacketCache:purgeExpired() method,
which will remove expired entries from the cache until at most n entries remain in the cache. For example, to
remove all expired entries:

25

dnsdist

getPool("poolname"):getCache():purgeExpired(0)

Specific entries can also be removed using the PacketCache:expungeByName() method:

getPool("poolname"):getCache():expungeByName(newDNSName("powerdns.com"), DNSQType.
→˓A)

Changed in version 1.4.0: Before 1.4.0, the QTypes were in the dnsdist namespace. Use dnsdist.A in these
versions.

Finally, the PacketCache:expunge() method will remove all entries until at most n entries remain in the
cache:

getPool("poolname"):getCache():expunge(0)

26 Chapter 7. Caching Responses

CHAPTER

EIGHT

EXPORTING STATISTICS VIA CARBON

8.1 Setting up a carbon export

To emit metrics to Graphite, or any other software supporting the Carbon protocol, use:

carbonServer('ip-address-of-carbon-server', 'ourname', 30, 'dnsdist', 'main')

Where ourname can be used to override your hostname, and 30 is the reporting interval in seconds. dnsdist
and main are used as namespace and instance variables. For querycount statistics these two variables are currently
ignored. The last four arguments can be omitted. The latest version of PowerDNS Metronome comes with
attractive graphs for dnsdist by default.

8.2 Query counters

In addition to other metrics, it is possible to send per-records statistics of the amount of queries by using
setQueryCount(). With query counting enabled, dnsdist will increase a counter for every unique record
or the behaviour you define in a custom Lua function by setting setQueryCountFilter(). This filter can
decide whether to keep count on a query at all or rewrite for which query the counter will be increased. An
example of a QueryCountFilter would be:

function filter(dq)
qname = dq.qname:toString()

-- don't count PTRs at all
if(qname:match('in%-addr.arpa$')) then
return false, ""

end

-- count these queries as if they were queried without leading www.
if(qname:match('^www.')) then
qname = qname:gsub('^www.', '')

end

-- count queries by default
return true, qname

end

setQueryCountFilter(filter)

Valid return values for QueryCountFilter functions are:

• true: count the specified query

• false: don’t count the query

Note that the query counters are buffered and flushed each time statistics are sent to the carbon server. The current
content of the buffer can be inspected with :getQueryCounters(). If you decide to enable query counting

27

https://github.com/ahupowerdns/metronome

dnsdist

without carbonServer(), make sure you implement clearing the log from maintenance() by issuing
clearQueryCounters().

28 Chapter 8. Exporting statistics via Carbon

CHAPTER

NINE

WORKING WITH THE DNSDIST CONSOLE

dnsdist can expose a commandline console over an encrypted tcp connection for controlling it, debugging DNS
issues and retrieving statistics.

The console can be enabled with controlSocket():

controlSocket('192.0.2.53:5199')

Enabling the console without encryption enabled is not recommended. Note that encryption requires building
dnsdist with either libsodium or libcrypto support enabled.

Once you have a console-enabled dnsdist, the first step to enable encryption is to generate a key with makeKey():

$./dnsdist -l 127.0.0.1:5300 -C /dev/null
[..]
> makeKey()
setKey("ENCODED KEY")

The example above tells dnsdist not to load the default configuration file (-C /dev/null) to prevent it from
trying to listen on privileged ports, connect to backends, etc. It also instructs dnsdist not to listen on the default
(privileged) port 53 of all available addresses but on an unprivileged and hopefully available port 5300 on the local
interface instead (-l 127.0.0.1:5300).

The key does not have a specific format, so base-64 encoding 32 random bytes works as well:

$ dd if=/dev/random bs=1 count=32 status=none | base64

or using openssl:

$ openssl rand -base64 32

Then add the generated setKey() line to your dnsdist configuration file, along with a controlSocket():

controlSocket('192.0.2.53:5199') -- Listen on this IP and port for client
→˓connections
setKey("ENCODED KEY") -- Shared secret for the console

Now you can run dnsdist -c to connect to the console. This makes dnsdist read its configuration file and use
the controlSocket() and setKey() statements to set up its connection to the server.

If you want to connect over the network, create a configuration file with the same two statements and run dnsdist
-C /path/to/configfile -c.

Alternatively, you can specify the address and key on the client commandline:

dnsdist -k "ENCODED KEY" -c 192.0.2.53:5199

Warning: This will leak the key into your shell’s history and is not recommended.

29

dnsdist

Since 1.3.0, dnsdist supports restricting which client can connect to the console with an ACL:

controlSocket('192.0.2.53:5199')
setConsoleACL('192.0.2.0/24')

The default value is ‘127.0.0.1’, restricting the use of the console to local users. Please make sure that encryption
is enabled before using addConsoleACL() or setConsoleACL() to allow connection from remote clients.
Even if the console is restricted to local users, the use of encryption is still strongly advised to prevent unauthorized
local users from connecting to the console.

30 Chapter 9. Working with the dnsdist Console

CHAPTER

TEN

DNS-OVER-HTTP/3 (DOH3)

Note: This guide is about DNS over HTTP/3. For DNS over HTTP/1 and DNS over HTTP/2, please see DNS-
over-HTTPS (DoH)

dnsdist supports DNS-over-HTTP/3 (DoH3) for incoming queries since 1.9.0. To see if the installation supports
this, run dnsdist --version. If the output shows dns-over-http3 incoming DNS-over-HTTP/3 is
supported.

10.1 Incoming

Adding a listen port for DNS-over-HTTP/3 can be done with the addDOH3Local() function, e.g.:

addDOH3Local('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key')

This will make dnsdist listen on [2001:db8:1:f00::1]:443 on UDP, and will use the provided certificate and key
to serve incoming DoH3 connections.

The fourth parameter, if present, indicates various options. For instance, you can change the congestion control
algorithm used. An example is:

addDOH3Local('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', {congestionControlAlgo="bbr"})

A particular attention should be taken to the permissions of the certificate and key files. Many ACME clients
used to get and renew certificates, like CertBot, set permissions assuming that services are started as root, which
is no longer true for dnsdist as of 1.5.0. For that particular case, making a copy of the necessary files in the
/etc/dnsdist directory is advised, using for example CertBot’s --deploy-hook feature to copy the files with the
right permissions after a renewal.

More information about sessions management can also be found in TLS Sessions Management.

10.1.1 Advertising DNS over HTTP/3 support

If DNS over HTTP/2 is also enabled in the configuration via addDOHLocal() (see DNS-over-HTTPS (DoH)
for more information), it might be useful to advertise DNS over HTTP/3 support via the Alt-Svc header:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', "/dns", {customResponseHeaders={["alt-svc"]="h3=\":443\
→˓""}})

This will advertise that HTTP/3 is available on the same IP, port UDP/443.

31

dnsdist

32 Chapter 10. DNS-over-HTTP/3 (DoH3)

CHAPTER

ELEVEN

DNS-OVER-HTTPS (DOH)

Note: This guide is about DNS over HTTP/1 and DNS over HTTP/2. For DNS over HTTP/3, please see DNS-
over-HTTP/3 (DoH3)

dnsdist supports DNS-over-HTTPS (DoH, standardized in RFC 8484) for incoming queries since
1.4.0, and for outgoing queries since 1.7.0. To see if the installation supports this, run dnsdist
--version. If the output shows dns-over-https(DOH) (dns-over-https(h2o nghttp2),
dns-over-https(h2o) or dns-over-https(nghttp2) since 1.9.0) , incoming DNS-over-HTTPS is
supported. If outgoing-dns-over-https(nghttp2) shows up then outgoing DNS-over-HTTPS is sup-
ported.

11.1 Incoming

Adding a listen port for DNS-over-HTTPS can be done with the addDOHLocal() function, e.g.:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key')

This will make dnsdist listen on [2001:db8:1:f00::1]:443 on TCP, and will use the provided certificate and key
to serve incoming TLS connections.

In order to support multiple certificates and keys, for example an ECDSA and an RSA one, the following syntax
may be used instead:

addDOHLocal('2001:db8:1:f00::1', {'/etc/ssl/certs/example.com.rsa.pem', '/etc/ssl/
→˓certs/example.com.ecdsa.pem'}, {'/etc/ssl/private/example.com.rsa.key', '/etc/
→˓ssl/private/example.com.ecdsa.key'})

The certificate chain presented by the server to an incoming client will then be selected based on the algorithms
this client advertised support for.

A fourth parameter may be added to specify the URL path(s) used by DoH. If you want your DoH server to handle
https://example.com/dns-query-endpoint, you have to add "/dns-query-endpoint" to the
call to addDOHLocal(). It is optional and defaults to / in 1.4.0, and /dns-query since 1.5.0.

The fifth parameter, if present, indicates various options. For instance, you use it to indicate custom HTTP headers.
An example is:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', "/dns", {customResponseHeaders={["x-foo"]="bar"}})

A more complicated (and more realistic) example is when you want to indicate metainformation about the server,
such as the stated policy (privacy statement and so on). We use the link types of RFC 8631:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', "/", {customResponseHeaders={["link"]="<https://
→˓example.com/policy.html> rel=\\"service-meta\\"; type=\\"text/html\\""}})(continues on next page)

33

dnsdist

(continued from previous page)

A particular attention should be taken to the permissions of the certificate and key files. Many ACME clients
used to get and renew certificates, like CertBot, set permissions assuming that services are started as root, which
is no longer true for dnsdist as of 1.5.0. For that particular case, making a copy of the necessary files in the
/etc/dnsdist directory is advised, using for example CertBot’s --deploy-hook feature to copy the files with the
right permissions after a renewal.

More information about sessions management can also be found in TLS Sessions Management.

11.1.1 Advertising DNS over HTTP/3 support

If DNS over HTTP/3 is also enabled in the configuration via addDOH3Local() (see DNS-over-HTTP/3 (DoH3)
for more information), it might be useful to advertise this support via the Alt-Svc header:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', "/dns", {customResponseHeaders={["alt-svc"]="h3=\":443\
→˓""}})

This will advertise that HTTP/3 is available on the same IP, port UDP/443.

11.1.2 Custom responses

It is also possible to set HTTP response rules to intercept HTTP queries early, before the DNS payload, if any,
has been processed, to send custom responses including error pages, redirects or even serve static content. First
a rule needs to be defined using newDOHResponseMapEntry(), then a set of rules can be applied to a DoH
frontend via DOHFrontend:setResponsesMap(). For example, to send an HTTP redirect to queries asking
for /rfc, the following configuration can be used:

map = { newDOHResponseMapEntry("^/rfc$", 307, "https://www.rfc-editor.org/info/
→˓rfc8484") }
dohFE = getDOHFrontend(0)
dohFE:setResponsesMap(map)

11.1.3 DNS over HTTP

In case you want to run DNS-over-HTTPS behind a reverse proxy you probably don’t want to encrypt your traffic
between reverse proxy and dnsdist. To let dnsdist listen for DoH queries over HTTP on localhost at port 8053 add
one of the following to your config:

addDOHLocal("127.0.0.1:8053")
addDOHLocal("127.0.0.1:8053", nil, nil, "/", { reusePort=true })

11.1.4 HTTP/1 support

dnsdist initially relied on the h2o library to support incoming DNS over HTTPS. Since 1.9.0, h2o has been
deprecated and nghttp2 is the preferred library for incoming DoH support, because h2o has unfortunately really
never been maintained in a way that is suitable for use as a library (see https://github.com/h2o/h2o/issues/3230).
While we took great care to make the migration as painless as possible, h2o supported HTTP/1 while nghttp2
does not. This is not an issue for actual DNS over HTTPS clients that support HTTP/2, but might be one in
setups running dnsdist behind a reverse-proxy that does not support HTTP/2, like nginx. We do not plan on
implementing HTTP/1, and recommend using HTTP/2 between the reverse-proxy and dnsdist for performance
reasons. For nginx in particular, a possible work-around is to use the grpc_pass directive as suggested in their bug
tracker.

34 Chapter 11. DNS-over-HTTPS (DoH)

https://github.com/h2o/h2o/issues/3230
http://nginx.org/r/grpc_pass
https://trac.nginx.org/nginx/ticket/1875
https://trac.nginx.org/nginx/ticket/1875

dnsdist

11.1.5 Internal design

The internal design used for DoH handling uses two threads per addDOHLocal() directive. The first thread will
handle the HTTP/2 communication with the client and pass the received DNS queries to a second thread which
will apply the rules and pass the query to a backend, over UDP (except if the backend is TCP-only, or uses DNS
over TLS, see the second schema below). The response will be received by the regular UDP response handler for
that backend and passed back to the first thread. That allows the first thread to be low-latency dealing with TLS
and HTTP/2 only and never blocking.

The fact that the queries are forwarded over UDP means that a large UDP payload size should be configured
between dnsdist and the backend to avoid most truncation issues, and dnsdist will advise a 4096-byte UDP Payload
Buffer size. UDP datagrams can still be larger than the MTU as long as fragmented datagrams are not dropped
on the path between dnsdist and the backend. Since 1.7.0, truncated answers received over UDP for a DoH query
will lead to a retry over TCP, passing the query to a TCP worker, as illustrated below.

11.1. Incoming 35

dnsdist

11.1.6 Investigating issues

dnsdist provides a lot of counters to investigate issues:

• showTCPStats() will display a lot of information about current and passed connections

• showTLSErrorCounters() some metrics about why TLS sessions failed to establish

• showDOHResponseCodes() returns metrics about HTTP response codes sent by dnsdist

11.2 Outgoing

Support for securing the exchanges between dnsdist and the backend will be implemented in 1.7.0, and will lead
to all queries, regardless of whether they were initially received by dnsdist over UDP, TCP, DoT or DoH, being
forwarded over a secure DNS over HTTPS channel. That support can be enabled via the dohPath parameter
of the newServer() command. Additional parameters control the TLS provider used (tls), the validation of
the certificate presented by the backend (caStore, validateCertificates), the actual TLS ciphers used
(ciphers, ciphersTLS13) and the SNI value sent (subjectName).

newServer({address="[2001:DB8::1]:443", tls="openssl", subjectName="doh.powerdns.
→˓com", dohPath="/dns-query", validateCertificates=true})

11.2.1 Internal design

The incoming queries, after the processing of rules if any, are passed to one of the DoH workers over a
pipe. The DoH worker handles the communication with the backend, retrieves the response, and either re-
sponds directly to the client (queries coming over UDP) or pass it back over a pipe to the initial thread
(queries coming over TCP, DoT or DoH). The number of outgoing DoH worker threads can be configured us-
ing setOutgoingDoHWorkerThreads().

36 Chapter 11. DNS-over-HTTPS (DoH)

CHAPTER

TWELVE

DNS-OVER-QUIC (DOQ)

dnsdist supports DNS-over-QUIC (DoQ, standardized in RFC 9250) for incoming queries since 1.9.0. To see
if the installation supports this, run dnsdist --version. If the output shows dns-over-quic incoming
DNS-over-QUIC is supported.

12.1 Incoming

Adding a listen port for DNS-over-QUIC can be done with the addDOQLocal() function, e.g.:

addDOQLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key')

This will make dnsdist listen on [2001:db8:1:f00::1]:853 on UDP, and will use the provided certificate and key
to serve incoming DoQ connections.

The fourth parameter, if present, indicates various options. For instance, you can change the congestion control
algorithm used. An example is:

addDOQLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', {congestionControlAlgo="bbr"})

A particular attention should be taken to the permissions of the certificate and key files. Many ACME clients
used to get and renew certificates, like CertBot, set permissions assuming that services are started as root, which
is no longer true for dnsdist as of 1.5.0. For that particular case, making a copy of the necessary files in the
/etc/dnsdist directory is advised, using for example CertBot’s --deploy-hook feature to copy the files with the
right permissions after a renewal.

More information about sessions management can also be found in TLS Sessions Management.

37

dnsdist

38 Chapter 12. DNS-over-QUIC (DoQ)

CHAPTER

THIRTEEN

DNS-OVER-TLS

13.1 Incoming

Since version 1.3.0, dnsdist supports DNS-over-TLS for incoming queries. To see if the installation supports
this, run dnsdist --version. If the output shows dns-over-tls with one or more SSL libraries in
brackets, DNS-over-TLS is supported.

Adding a listen port for DNS-over-TLS can be done with the addTLSLocal() function, e.g.:

addTLSLocal('192.0.2.55', '/etc/ssl/certs/example.com.pem', '/etc/ssl/private/
→˓example.com.key')

This will make dnsdist listen on 192.0.2.55:853 on TCP, and will use the provided certificate and key to serve
incoming TLS connections.

In order to support multiple certificates and keys, for example an ECDSA and an RSA one, the following syntax
may be used instead:

addTLSLocal('192.0.2.55', {'/etc/ssl/certs/example.com.rsa.pem', '/etc/ssl/certs/
→˓example.com.ecdsa.pem'}, {'/etc/ssl/private/example.com.rsa.key', '/etc/ssl/
→˓private/example.com.ecdsa.key'})

The certificate chain presented by the server to an incoming client will then be selected based on the algorithms
this client advertised support for.

A particular attention should be taken to the permissions of the certificate and key files. Many ACME clients
used to get and renew certificates, like CertBot, set permissions assuming that services are started as root, which
is no longer true for dnsdist as of 1.5.0. For that particular case, making a copy of the necessary files in the
/etc/dnsdist directory is advised, using for example CertBot’s --deploy-hook feature to copy the files with the
right permissions after a renewal.

More information about sessions management can also be found in TLS Sessions Management.

13.2 Outgoing

Support for securing the exchanges between dnsdist and the backend will be implemented in 1.7.0, and will
lead to all queries, regardless of whether they were initially received by dnsdist over UDP, TCP, DoT or DoH,
being forwarded over a secure DNS over TLS channel. That support can be enabled via the tls parameter of
the newServer() command. Additional parameters control the validation of the certificate presented by the
backend (caStore, validateCertificates), the actual TLS ciphers used (ciphers, ciphersTLS13)
and the SNI value sent (subjectName).

newServer({address="[2001:DB8::1]:853", tls="openssl", subjectName="dot.powerdns.
→˓com", validateCertificates=true})

39

dnsdist

13.3 Investigating issues

dnsdist provides a lot of counters to investigate issues:

• showTCPStats() will display a lot of information about current and passed connections

• showTLSErrorCounters() some metrics about why TLS sessions failed to establish

40 Chapter 13. DNS-over-TLS

CHAPTER

FOURTEEN

DNSCRYPT

dnsdist, when compiled with --enable-dnscrypt, can be used as a DNSCrypt server, uncurving queries
before forwarding them to downstream servers and curving responses back. To make dnsdist listen to incoming
DNSCrypt queries on 127.0.0.1 port 8443, with a provider name of “2.providername”, using a resolver certificate
and associated key stored respectively in the resolver.cert and resolver.key files, the addDNSCryptBind()
directive can be used:

addDNSCryptBind("127.0.0.1:8443", "2.providername", "/path/to/resolver.cert", "/
→˓path/to/resolver.key")

To generate the provider and resolver certificates and keys, you can simply do:

> generateDNSCryptProviderKeys("/path/to/providerPublic.key", "/path/to/
→˓providerPrivate.key")
Provider fingerprint is:
→˓E1D7:2108:9A59:BF8D:F101:16FA:ED5E:EA6A:9F6C:C78F:7F91:AF6B:027E:62F4:69C3:B1AA
> generateDNSCryptCertificate("/path/to/providerPrivate.key", "/path/to/resolver.
→˓cert", "/path/to/resolver.key", serial, validFrom, validUntil)

Ideally, the certificates and keys should be generated on an offline dedicated hardware and not on the resolver. The
resolver key should be regularly rotated and should never touch persistent storage, being stored in a tmpfs with no
swap configured.

You can display the currently configured DNSCrypt binds with:

> showDNSCryptBinds()
Address Provider Name Serial Validity P.
→˓Serial P. Validity
0 127.0.0.1:8443 2.name 14 2016-04-10 08:14:15 0
→˓ -

If you forgot to write down the provider fingerprint value after generating the provider keys, you can use
printDNSCryptProviderFingerprint() to retrieve it later:

> printDNSCryptProviderFingerprint("/path/to/providerPublic.key")
Provider fingerprint is:
→˓E1D7:2108:9A59:BF8D:F101:16FA:ED5E:EA6A:9F6C:C78F:7F91:AF6B:027E:62F4:69C3:B1A

41

dnsdist

42 Chapter 14. DNSCrypt

CHAPTER

FIFTEEN

CONFIGURING DOWNSTREAM SERVERS

As dnsdist is a loadbalancer and does not do any DNS resolving or serving by itself, it needs downstream servers.
To add downstream servers, either include them on the command line:

dnsdist -l 130.161.252.29 -a 130.161.0.0/16 8.8.8.8 208.67.222.222 2620:0:ccc::2
→˓2620:0:ccd::2

Or add them to the configuration file:

setLocal("130.161.252.29:53")
setACL("130.161.0.0/16")
newServer("8.8.8.8")
newServer("208.67.222.222")
newServer("2620:0:ccc::2")
newServer("2620:0:0ccd::2")

These two equivalent configurations give you sane load balancing using a very sensible distribution policy. Many
users will simply be done with this configuration. It works as well for authoritative as for recursive servers.

15.1 Healthcheck

dnsdist uses health-check queries, sent once every second, to determine the availability of a backend server. Since
1.8.0, it also supports a lazy health-checking mode which only sends active health-check queries after a config-
urable threshold of regular queries have failed, see below.

By default, an A query for the “a.root-servers.net.” name is sent. A different query type, class and target
can be specified by passing, respectively, the checkType, checkClass and checkName parameters to
newServer(). The interval between two health-check queries can be set via the checkInterval interval
parameter, and the amount of time for a response to be received via the checkTimeout one.

Since the 1.3.0 release, the checkFunction option is also supported, taking a Lua function as parameter. This
function receives a DNSName, two integers and a DNSHeader object (DNSHeader (dh) object) representing the
QName, QType and QClass of the health check query as well as the DNS header, as they are defined before the
function was called. The function must return a DNSName and two integers representing the new QName, QType
and QClass, and can directly modify the DNSHeader object.

The following example sets the CD flag to true and change the QName to “powerdns.com.” and the QType to
AAAA while keeping the initial QClass.

function myHealthCheck(qname, qtype, qclass, dh)
dh:setCD(true)

return newDNSName("powerdns.com."), DNSQType.AAAA, qclass
end

newServer({address="2620:0:0ccd::2", checkFunction=myHealthCheck})

43

dnsdist

The default behavior is to consider any valid response with an RCODE different from ServFail as valid. If
the mustResolve parameter of newServer() is set to true, a response will only be considered valid if its
RCODE differs from NXDomain, ServFail and Refused.

The number of health check failures before a server is considered down is configurable via the
maxCheckFailures parameter, defaulting to 1. In the same way, the number of consecutive successful health
checks needed for a server to be considered available can be set via the rise parameter, defaulting to 1.

The CD flag can be set on the query by setting setCD to true. e.g.:

newServer({address="192.0.2.1", checkType="AAAA", checkClass=DNSClass.CHAOS,
→˓checkName="a.root-servers.net.", mustResolve=true})

You can turn on logging of health check errors using the setVerboseHealthChecks() function.

15.1.1 Lazy health-checking

In some setups, especially on low-end devices, it might not make sense to actively send queries to the backend at
a regular interval. Using the feedback from the results of regular queries can instead be used to infer if a backend
might not be working properly.

Since 1.8.0, dnsdist implements a lazy mode that can be set via the healthCheckMode option on
newServer(). In this mode, dnsdist will only send active health-check queries after seeing a configurable
amount of regular queries failing. It will then place the backend in a PotentialFailure state, from the initial
Healthy one, and send health-check queries every checkInterval seconds. If maxCheckFailures of
these fail, the backend is then moved to a Failed state and marked as down, and active health-check queries are
sent every lazyHealthCheckFailedInterval seconds. After rise successful, consecutive queries, the
backend will be moved back to the Healthy state and marked as up again, and health-check queries will stop.

The threshold of failed regular queries is configured via lazyHealthCheckThreshold, indicating of per-
centage of regular queries that should have resulted in a failure over the last recent queries. Only the results of
the last lazyHealthCheckSampleSize queries will be considered, as the results are kept in a in-memory
circular buffer. The results of at least lazyHealthCheckMinSampleCount queries should be present for the
threshold to be considered meaningful, to avoid an issue with a too small sample.

44 Chapter 15. Configuring Downstream Servers

dnsdist

By default both queries that resulted in a timeout and those that received a ServFail answer are considered fail-
ures, but it is possible to set lazyHealthCheckMode to TimeoutOnly so that only timeouts are considered
failures.

So for example, if we set healthCheckMode to lazy, lazyHealthCheckSampleSize
to 100, lazyHealthCheckMinSampleCount to 10, lazyHealthCheckThreshold to 30,
maxCheckFailures to 2 and rise to 2:

• nothing will happen until at least 10 queries have been received

• only the results of the last 100 queries will be considered

• if at least 30 of these last 100 have failed, the threshold will be reached and active health-check queries will
be sent every checkInterval seconds

• if the health-check query is successful, the backend will stay up and no more query will be sent

• but if instead two consecutive queries fail, the backend will be marked as down and health-check queries
will be sent every lazyHealthCheckFailedInterval seconds

• it will take two consecutive, successful health-checks for the backend to go back to Healthy and be
marked up again

newServer({address="192.0.2.1", healthCheckMode='lazy', checkInterval=1,
→˓lazyHealthCheckFailedInterval=30, rise=2, maxCheckFailures=3,
→˓lazyHealthCheckThreshold=30, lazyHealthCheckSampleSize=100,
→˓lazyHealthCheckMinSampleCount=10, lazyHealthCheckMode='TimeoutOnly'})

The ‘lazy’ mode also supports using an exponential back-off time between health-check queries,
once a backend has been moved to the ‘down’ state. This can be enabled by setting the
lazyHealthCheckUseExponentialBackOff parameter to ‘true’. Once the backend has
been marked as ‘down’, the first query will be sent after lazyHealthCheckFailedInterval
seconds, the second one after 2 times lazyHealthCheckFailedInterval seconds, the
third after 4 times lazyHealthCheckFailedInterval seconds, and so on and so forth,
until lazyHealthCheckMaxBackOff has been reached. Then probes will be sent every
lazyHealthCheckMaxBackOff seconds (default is 3600 so one hour) until the backend comes ‘up’
again.

15.2 Source address selection

In multi-homed setups, it can be useful to be able to select the source address or the outgoing interface used by
dnsdist to contact a downstream server. This can be done by using the source parameter:

newServer({address="192.0.2.1", source="192.0.2.127"})
newServer({address="192.0.2.1", source="eth1"})
newServer({address="192.0.2.1", source="192.0.2.127@eth1"})

The supported values for source are:

• an IPv4 or IPv6 address, which must exist on the system

• an interface name

• an IPv4 or IPv6 address followed by ‘@’ then an interface name

Please note that specifying the interface name is only supported on system having IP_PKTINFO.

15.2. Source address selection 45

dnsdist

15.3 Securing the channel

15.4 Securing the path to the backend

As explained briefly in the quickstart guide, dnsdist has always been designed as a load-balancer placed in front of
authoritative or recursive servers, assuming that the network path between dnsdist and these servers is trusted. This
is particularly important because for performance reasons it uses a single connected socket for UDP exchanges by
default, and easy to predict DNS query IDs, which makes it easy for an attacker to poison responses.

If dnsdist is instead intended to be deployed in such a way that the path to its backend is not secure, the UDP
protocol should not be used, and ‘TCP-only’, DNS over TLS and DNS over HTTPS protocols used instead, as
supported since 1.7.0.

Using these protocols leads to all queries, regardless of whether they were initially received by dnsdist over UDP,
TCP, DoT or DoH, being forwarded over a TCP socket, a secure DNS over TLS channel or a secure DNS over
HTTPS channel.

The TCP-only mode for a backend can be enabled by using the tcpOnly parameter of the newServer()
command.

The DNS over TLS mode via the tls parameter of the newServer() command. Additional parameters control
the validation of the certificate presented by the backend (caStore, validateCertificates), the actual
TLS ciphers used (ciphers, ciphersTLS13) and the SNI value sent (subjectName).

The DNS over HTTPS mode in the same way than DNS over TLS but with the additional dohPath keyword
indicating that DNS over HTTPS should be used instead of DNS over TLS.

If it is absolutely necessary to support UDP exchanges over an untrusted network, a few options have been intro-
duced in 1.8.0 to make spoofing attempts harder:

• setRandomizedIdsOverUDP() will randomize the IDs in outgoing queries, at a small performance
cost. setMaxUDPOutstanding() should be set at its highest possible value (default since 1.4.0) to
make that setting fully efficient.

• setRandomizedOutgoingSockets() can be used to randomize the outgoing socket used when for-
warding a query to a backend. This requires configuring the backend to use more than one outgoing socket
via the sockets parameter of newServer() to be of any use.

46 Chapter 15. Configuring Downstream Servers

CHAPTER

SIXTEEN

DYNAMIC RULE GENERATION

Dynamic Blocks can be seen are short-lived rules, automatically inserted based on configurable thresholds and the
analysis of recently received traffic, and automatically removed after a configurable amount of time.

The analyzed traffic is the one kept by dnsdist in its in-memory ring buffers. The number of entries kept in
these ring buffers can be set via the setRingBuffersSize() directive, and the impact in terms of CPU and
memory consumption is described in Performance Tuning.

That number of entries is crucial for the rate-based rules, like DynBlockRulesGroup:setQueryRate(),
as they will never match if the number of entries in the ring buffer is too small for the required rate, as explained
in more details below.

To set dynamic rules, based on recent traffic, define a function called maintenance() in Lua. It will get called
every second, and from this function you can set rules to block traffic based on statistics. More exactly, the thread
handling the maintenance() function will sleep for one second between each invocation, so if the function
takes several seconds to complete it will not be invoked exactly every second.

As an example:

local dbr = dynBlockRulesGroup()
dbr:setQueryRate(20, 10, "Exceeded query rate", 60)

function maintenance()
dbr:apply()

end

This will dynamically block all hosts that exceeded 20 queries/s as measured over the past 10 seconds, and the
dynamic block will last for 60 seconds.

DynBlockRulesGroup is a very efficient way of processing dynamic blocks that was introduced in 1.3.0. Before
that, it was possible to use addDynBlocks() instead:

-- this is a legacy method, please see above for DNSdist >= 1.3.0
function maintenance()

addDynBlocks(exceedQRate(20, 10), "Exceeded query rate", 60)
end

Dynamic blocks in force are displayed with showDynBlocks() and can be cleared with
clearDynBlocks(). They return a table whose key is a ComboAddress object, representing the client’s
source address, and whose value is an integer representing the number of queries matching the corresponding
condition (for example the qtype for exceedQTypeRate(), rcode for exceedServFails()).

All exceed-functions are documented in the Configuration Reference.

Dynamic blocks drop matched queries by default, but this behavior can be changed with
setDynBlocksAction(). For example, to send a REFUSED code instead of dropping the query:

setDynBlocksAction(DNSAction.Refused)

Please see the documentation for setDynBlocksAction() to confirm which actions are supported.

47

dnsdist

16.1 DynBlockRulesGroup

Starting with dnsdist 1.3.0, a new dynBlockRulesGroup() function can be used to return a
DynBlockRulesGroup instance, designed to make the processing of multiple rate-limiting rules faster by
walking the query and response buffers only once for each invocation, instead of once per existing exceed*()
invocation.

The new syntax would be:

local dbr = dynBlockRulesGroup()
dbr:setQueryRate(30, 10, "Exceeded query rate", 60)
dbr:setRCodeRate(DNSRCode.NXDOMAIN, 20, 10, "Exceeded NXD rate", 60)
dbr:setRCodeRate(DNSRCode.SERVFAIL, 20, 10, "Exceeded ServFail rate", 60)
dbr:setQTypeRate(DNSQType.ANY, 5, 10, "Exceeded ANY rate", 60)
dbr:setResponseByteRate(10000, 10, "Exceeded resp BW rate", 60)

function maintenance()
dbr:apply()

end

Before 1.3.0 the legacy syntax was:

function maintenance()
-- this example is using legacy methods, please see above for DNSdist >= 1.3.0
addDynBlocks(exceedQRate(30, 10), "Exceeded query rate", 60)
addDynBlocks(exceedNXDOMAINs(20, 10), "Exceeded NXD rate", 60)
addDynBlocks(exceedServFails(20, 10), "Exceeded ServFail rate", 60)
addDynBlocks(exceedQTypeRate(DNSQType.ANY, 5, 10), "Exceeded ANY rate", 60)
addDynBlocks(exceedRespByterate(1000000, 10), "Exceeded resp BW rate", 60)

end

The old syntax would walk the query buffer 2 times and the response one 3 times, while the new syntax does it
only once for each. It also reuse the same internal table to keep track of the source IPs, reducing the CPU usage.

DynBlockRulesGroup also offers the ability to specify that some network ranges should be excluded from dynamic
blocking:

-- do not add dynamic blocks for hosts in the 192.0.2.0/24 and 2001:db8::/32 ranges
dbr:excludeRange({"192.0.2.0/24", "2001:db8::/32" })
-- except for 192.0.2.1
dbr:includeRange("192.0.2.1/32")

Since 1.3.3, it’s also possible to define a warning rate. When the query or response rate raises above the warning
level but below the trigger level, a warning message will be issued along with a no-op block. If the rate reaches
the trigger level, the regular action is applied.

local dbr = dynBlockRulesGroup()
-- Generate a warning if we detect a query rate above 100 qps for at least 10s.
-- If the query rate raises above 300 qps for 10 seconds, we'll block the client
→˓for 60s.
dbr:setQueryRate(300, 10, "Exceeded query rate", 60, DNSAction.Drop, 100)

Since 1.6.0, if a default eBPF filter has been set via setDefaultBPFFilter() dnsdist will automatically try
to use it when a “drop” dynamic block is inserted via a DynBlockRulesGroup. eBPF blocks are applied in kernel
space and are much more efficient than user space ones. Note that a regular block is also inserted so that any
failure will result in a regular block being used instead of the eBPF one.

48 Chapter 16. Dynamic Rule Generation

dnsdist

16.2 Rate rules and size of the ring buffers

As explained in the introduction, the whole dynamic block feature is based on analyzing the recent traffic kept in
dnsdist’s in-memory ring buffers, whose content can be inspected via grepq().

The sizing of the buffers, in addition to having performance impacts explained in Performance Tuning, directly
impacts some of the dynamic block rules, like the rate and ratio-based ones.

For example, if DynBlockRulesGroup:setQueryRate() is used to request the blocking for 60s of any
client exceeding 1000 qps over 10s, like this:

dbr:setQueryRate(1000, 10, "Exceeded query rate", 60, DNSAction.Drop)

For this rule to trigger, dnsdist will need to scan the ring buffers and find 1000 * 10 = 10000 queries, not older
than 10s, from that client. Since a ring buffer has a fixed size, and new entries override the oldest ones when the
buffer is full, that only works if there are enough entries in the buffer.

This is even more obvious for the ratio-based rules, when they have a minimum number of responses set, because
in that case they clearly require that number of responses to fit in the buffer.

That requirement could be lifted a bit by the use of sampling, meaning that only one query out of 10 would be
recorded, for example, and the total amount would be inferred from the queries present in the buffer. As of 1.7.0,
sampling as unfortunately not been implemented yet.

16.2. Rate rules and size of the ring buffers 49

dnsdist

50 Chapter 16. Dynamic Rule Generation

CHAPTER

SEVENTEEN

GUIDES

These chapters contain several guides and nuggets of information regarding dnsdist operation and accomplishing
specific goals.

17.1 Built-in webserver

To visually interact with dnsdist, try adding webserver() and setWebserverConfig() directives to the
configuration:

webserver("127.0.0.1:8083")
setWebserverConfig({password="supersecretpassword", apiKey="supersecretAPIkey"})

Now point your browser at http://127.0.0.1:8083 and log in with any username, and that password. Enjoy!

Since 1.5.0, only connections from 127.0.0.1 and ::1 are allowed by default. To allow connections from
192.0.2.0/24 but not from 192.0.2.1, instead:

setWebserverConfig({password="supersecretpassword", apiKey="supersecretAPIkey",
→˓acl="192.0.2.0/24, !192.0.2.1"})

17.1.1 Security of the Webserver

The built-in webserver serves its content from inside the binary, this means it will not and cannot read from disk.

By default, our web server sends some security-related headers:

X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-XSS-Protection: 1; mode=block
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-inline'

You can override those headers, or add custom headers by using the last parameter to
setWebserverConfig(). For example, to remove the X-Frame-Options header and add a X-Custom
one:

setWebserverConfig({password="supersecretpassword", apiKey="supersecretAPIkey",
→˓customHeaders={["X-Frame-Options"]= "", ["X-Custom"]="custom"} })

Credentials can be changed at run time using the setWebserverConfig() function.

17.1.2 dnsdist API

To access the API, the apikey must be set in the setWebserverConfig() function. Use the API, this key will
need to be sent to dnsdist in the X-API-Key request header. An HTTP 401 response is returned when a wrong or

51

http://127.0.0.1:8083

dnsdist

no API key is received. A 404 response is generated is the requested endpoint does not exist. And a 405 response
is returned when the HTTP method is not allowed.

URL Endpoints

GET /jsonstat
Get statistics from dnsdist in JSON format. The Accept request header is ignored. This endpoint accepts
a command query for different statistics:

• stats: Get all Statistics as a JSON dict

• dynblocklist: Get all current dynamic blocks, keyed by netmask

• ebpfblocklist: Idem, but for eBPF blocks

Example request:

GET /jsonstat?command=stats HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Connection: close
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline'
Content-Type: application/json
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

{"acl-drops": 0, "cache-hits": 0, "cache-misses": 0, "cpu-sys-msec": 633,
→˓"cpu-user-msec": 499, "downstream-send-errors": 0, "downstream-timeouts
→˓": 0, "dyn-block-nmg-size": 1, "dyn-blocked": 3, "empty-queries": 0, "fd-
→˓usage": 17, "latency-avg100": 7651.3982737482893, "latency-avg1000": 860.
→˓05142763680249, "latency-avg10000": 87.032142373878372, "latency-
→˓avg1000000": 0.87146026426551759, "latency-slow": 0, "latency0-1": 0,
→˓"latency1-10": 0, "latency10-50": 22, "latency100-1000": 1, "latency50-
→˓100": 0, "no-policy": 0, "noncompliant-queries": 0, "noncompliant-
→˓responses": 0, "over-capacity-drops": 0, "packetcache-hits": 0,
→˓"packetcache-misses": 0, "queries": 26, "rdqueries": 26, "real-memory-
→˓usage": 6078464, "responses": 23, "rule-drop": 0, "rule-nxdomain": 0,
→˓"rule-refused": 0, "self-answered": 0, "server-policy": "leastOutstanding
→˓", "servfail-responses": 0, "too-old-drops": 0, "trunc-failures": 0,
→˓"uptime": 412}

Example request:

GET /jsonstat?command=dynblocklist HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Connection: close
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline' (continues on next page)

52 Chapter 17. Guides

dnsdist

(continued from previous page)

Content-Type: application/json
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

{"127.0.0.1/32": {"blocks": 3, "reason": "Exceeded query rate", "seconds":
→˓10}}

Query Parameters

• command – one of stats, dynblocklist or ebpfblocklist

GET /metrics
Get statistics from dnsdist in Prometheus format.

Example request:

GET /metrics HTTP/1.1

Example response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline'
Content-Type: text/plain
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

HELP dnsdist_responses Number of responses received from backends
TYPE dnsdist_responses counter
dnsdist_responses 0
HELP dnsdist_servfail_responses Number of SERVFAIL answers received from
→˓backends
TYPE dnsdist_servfail_responses counter
dnsdist_servfail_responses 0
HELP dnsdist_queries Number of received queries
TYPE dnsdist_queries counter
dnsdist_queries 0
HELP dnsdist_frontend_nxdomain Number of NXDomain answers sent to clients
TYPE dnsdist_frontend_nxdomain counter
dnsdist_frontend_nxdomain 0
HELP dnsdist_frontend_servfail Number of SERVFAIL answers sent to clients
TYPE dnsdist_frontend_servfail counter
dnsdist_frontend_servfail 0
HELP dnsdist_frontend_noerror Number of NoError answers sent to clients
TYPE dnsdist_frontend_noerror counter
dnsdist_frontend_noerror 0
HELP dnsdist_acl_drops Number of packets dropped because of the ACL
TYPE dnsdist_acl_drops counter
dnsdist_acl_drops 0
HELP dnsdist_rule_drop Number of queries dropped because of a rule
TYPE dnsdist_rule_drop counter
dnsdist_rule_drop 0
HELP dnsdist_rule_nxdomain Number of NXDomain answers returned because
→˓of a rule
TYPE dnsdist_rule_nxdomain counter

(continues on next page)

17.1. Built-in webserver 53

https://prometheus.io

dnsdist

(continued from previous page)

dnsdist_rule_nxdomain 0
HELP dnsdist_rule_refused Number of Refused answers returned because of
→˓a rule
TYPE dnsdist_rule_refused counter
dnsdist_rule_refused 0
HELP dnsdist_rule_servfail Number of SERVFAIL answers received because
→˓of a rule
TYPE dnsdist_rule_servfail counter
dnsdist_rule_servfail 0
HELP dnsdist_rule_truncated Number of truncated answers returned because
→˓of a rule
TYPE dnsdist_rule_truncated counter
dnsdist_rule_truncated 0
HELP dnsdist_self_answered Number of self-answered responses
TYPE dnsdist_self_answered counter
dnsdist_self_answered 0
HELP dnsdist_downstream_timeouts Number of queries not answered in time
→˓by a backend
TYPE dnsdist_downstream_timeouts counter
dnsdist_downstream_timeouts 0
HELP dnsdist_downstream_send_errors Number of errors when sending a
→˓query to a backend
TYPE dnsdist_downstream_send_errors counter
dnsdist_downstream_send_errors 0
HELP dnsdist_trunc_failures Number of errors encountered while
→˓truncating an answer
TYPE dnsdist_trunc_failures counter
dnsdist_trunc_failures 0
HELP dnsdist_no_policy Number of queries dropped because no server was
→˓available
TYPE dnsdist_no_policy counter
dnsdist_no_policy 0
HELP dnsdist_latency0_1 Number of queries answered in less than 1ms
TYPE dnsdist_latency0_1 counter
dnsdist_latency0_1 0
HELP dnsdist_latency1_10 Number of queries answered in 1-10 ms
TYPE dnsdist_latency1_10 counter
dnsdist_latency1_10 0
HELP dnsdist_latency10_50 Number of queries answered in 10-50 ms
TYPE dnsdist_latency10_50 counter
dnsdist_latency10_50 0
HELP dnsdist_latency50_100 Number of queries answered in 50-100 ms
TYPE dnsdist_latency50_100 counter
dnsdist_latency50_100 0
HELP dnsdist_latency100_1000 Number of queries answered in 100-1000 ms
TYPE dnsdist_latency100_1000 counter
dnsdist_latency100_1000 0
HELP dnsdist_latency_slow Number of queries answered in more than 1
→˓second
TYPE dnsdist_latency_slow counter
dnsdist_latency_slow 0
HELP dnsdist_latency_avg100 Average response latency in microseconds of
→˓the last 100 packets
TYPE dnsdist_latency_avg100 gauge
dnsdist_latency_avg100 0
HELP dnsdist_latency_avg1000 Average response latency in microseconds of
→˓the last 1000 packets
TYPE dnsdist_latency_avg1000 gauge
dnsdist_latency_avg1000 0
HELP dnsdist_latency_avg10000 Average response latency in microseconds
→˓of the last 10000 packets

(continues on next page)

54 Chapter 17. Guides

dnsdist

(continued from previous page)

TYPE dnsdist_latency_avg10000 gauge
dnsdist_latency_avg10000 0
HELP dnsdist_latency_avg1000000 Average response latency in microseconds
→˓of the last 1000000 packets
TYPE dnsdist_latency_avg1000000 gauge
dnsdist_latency_avg1000000 0
HELP dnsdist_latency_tcp_avg100 Average response latency, in
→˓microseconds, of the last 100 packets received over TCP
TYPE dnsdist_latency_tcp_avg100 gauge
dnsdist_latency_tcp_avg100 0
HELP dnsdist_latency_tcp_avg1000 Average response latency, in
→˓microseconds, of the last 1000 packets received over TCP
TYPE dnsdist_latency_tcp_avg1000 gauge
dnsdist_latency_tcp_avg1000 0
HELP dnsdist_latency_tcp_avg10000 Average response latency, in
→˓microseconds, of the last 10000 packets received over TCP
TYPE dnsdist_latency_tcp_avg10000 gauge
dnsdist_latency_tcp_avg10000 0
HELP dnsdist_latency_tcp_avg1000000 Average response latency, in
→˓microseconds, of the last 1000000 packets received over TCP
TYPE dnsdist_latency_tcp_avg1000000 gauge
dnsdist_latency_tcp_avg1000000 0
HELP dnsdist_latency_dot_avg100 Average response latency, in
→˓microseconds, of the last 100 packets received over DoT
TYPE dnsdist_latency_dot_avg100 gauge
dnsdist_latency_dot_avg100 0
HELP dnsdist_latency_dot_avg1000 Average response latency, in
→˓microseconds, of the last 1000 packets received over DoT
TYPE dnsdist_latency_dot_avg1000 gauge
dnsdist_latency_dot_avg1000 0
HELP dnsdist_latency_dot_avg10000 Average response latency, in
→˓microseconds, of the last 10000 packets received over DoT
TYPE dnsdist_latency_dot_avg10000 gauge
dnsdist_latency_dot_avg10000 0
HELP dnsdist_latency_dot_avg1000000 Average response latency, in
→˓microseconds, of the last 1000000 packets received over DoT
TYPE dnsdist_latency_dot_avg1000000 gauge
dnsdist_latency_dot_avg1000000 0
HELP dnsdist_latency_doh_avg100 Average response latency, in
→˓microseconds, of the last 100 packets received over DoH
TYPE dnsdist_latency_doh_avg100 gauge
dnsdist_latency_doh_avg100 0
HELP dnsdist_latency_doh_avg1000 Average response latency, in
→˓microseconds, of the last 1000 packets received over DoH
TYPE dnsdist_latency_doh_avg1000 gauge
dnsdist_latency_doh_avg1000 0
HELP dnsdist_latency_doh_avg10000 Average response latency, in
→˓microseconds, of the last 10000 packets received over DoH
TYPE dnsdist_latency_doh_avg10000 gauge
dnsdist_latency_doh_avg10000 0
HELP dnsdist_latency_doh_avg1000000 Average response latency, in
→˓microseconds, of the last 1000000 packets received over DoH
TYPE dnsdist_latency_doh_avg1000000 gauge
dnsdist_latency_doh_avg1000000 0
HELP dnsdist_uptime Uptime of the dnsdist process in seconds
TYPE dnsdist_uptime gauge
dnsdist_uptime 19
HELP dnsdist_real_memory_usage Current memory usage in bytes
TYPE dnsdist_real_memory_usage gauge
dnsdist_real_memory_usage 52269056
HELP dnsdist_udp_in_errors From /proc/net/snmp InErrors

(continues on next page)

17.1. Built-in webserver 55

dnsdist

(continued from previous page)

TYPE dnsdist_udp_in_errors counter
dnsdist_udp_in_errors 0
HELP dnsdist_udp_noport_errors From /proc/net/snmp NoPorts
TYPE dnsdist_udp_noport_errors counter
dnsdist_udp_noport_errors 86
HELP dnsdist_udp_recvbuf_errors From /proc/net/snmp RcvbufErrors
TYPE dnsdist_udp_recvbuf_errors counter
dnsdist_udp_recvbuf_errors 0
HELP dnsdist_udp_sndbuf_errors From /proc/net/snmp SndbufErrors
TYPE dnsdist_udp_sndbuf_errors counter
dnsdist_udp_sndbuf_errors 0
HELP dnsdist_udp_in_csum_errors From /proc/net/snmp InCsumErrors
TYPE dnsdist_udp_in_csum_errors counter
dnsdist_udp_in_csum_errors 0
HELP dnsdist_udp6_in_errors From /proc/net/snmp6 Udp6InErrors
TYPE dnsdist_udp6_in_errors counter
dnsdist_udp6_in_errors 0
HELP dnsdist_udp6_recvbuf_errors From /proc/net/snmp6 Udp6RcvbufErrors
TYPE dnsdist_udp6_recvbuf_errors counter
dnsdist_udp6_recvbuf_errors 0
HELP dnsdist_udp6_sndbuf_errors From /proc/net/snmp6 Udp6SndbufErrors
TYPE dnsdist_udp6_sndbuf_errors counter
dnsdist_udp6_sndbuf_errors 0
HELP dnsdist_udp6_noport_errors From /proc/net/snmp6 Udp6NoPorts
TYPE dnsdist_udp6_noport_errors counter
dnsdist_udp6_noport_errors 195
HELP dnsdist_udp6_in_csum_errors From /proc/net/snmp6 Udp6InCsumErrors
TYPE dnsdist_udp6_in_csum_errors counter
dnsdist_udp6_in_csum_errors 0
HELP dnsdist_tcp_listen_overflows From /proc/net/netstat ListenOverflows
TYPE dnsdist_tcp_listen_overflows counter
dnsdist_tcp_listen_overflows 0
HELP dnsdist_noncompliant_queries Number of queries dropped as non-
→˓compliant
TYPE dnsdist_noncompliant_queries counter
dnsdist_noncompliant_queries 0
HELP dnsdist_noncompliant_responses Number of answers from a backend
→˓dropped as non-compliant
TYPE dnsdist_noncompliant_responses counter
dnsdist_noncompliant_responses 0
HELP dnsdist_proxy_protocol_invalid Number of queries dropped because of
→˓an invalid Proxy Protocol header
TYPE dnsdist_proxy_protocol_invalid counter
dnsdist_proxy_protocol_invalid 0
HELP dnsdist_rdqueries Number of received queries with the recursion
→˓desired bit set
TYPE dnsdist_rdqueries counter
dnsdist_rdqueries 0
HELP dnsdist_empty_queries Number of empty queries received from clients
TYPE dnsdist_empty_queries counter
dnsdist_empty_queries 0
HELP dnsdist_cache_hits Number of times an answer was retrieved from
→˓cache
TYPE dnsdist_cache_hits counter
dnsdist_cache_hits 0
HELP dnsdist_cache_misses Number of times an answer not found in the
→˓cache
TYPE dnsdist_cache_misses counter
dnsdist_cache_misses 0
HELP dnsdist_cpu_iowait Time waiting for I/O to complete by the whole
→˓system, in units of USER_HZ

(continues on next page)

56 Chapter 17. Guides

dnsdist

(continued from previous page)

TYPE dnsdist_cpu_iowait counter
dnsdist_cpu_iowait 0
HELP dnsdist_cpu_steal Stolen time, which is the time spent by the whole
→˓system in other operating systems when running in a virtualized
→˓environment, in units of USER_HZ
TYPE dnsdist_cpu_steal counter
dnsdist_cpu_steal 0
HELP dnsdist_cpu_sys_msec Milliseconds spent by dnsdist in the system
→˓state
TYPE dnsdist_cpu_sys_msec counter
dnsdist_cpu_sys_msec 38
HELP dnsdist_cpu_user_msec Milliseconds spent by dnsdist in the user
→˓state
TYPE dnsdist_cpu_user_msec counter
dnsdist_cpu_user_msec 38
HELP dnsdist_fd_usage Number of currently used file descriptors
TYPE dnsdist_fd_usage gauge
dnsdist_fd_usage 32
HELP dnsdist_dyn_blocked Number of queries dropped because of a dynamic
→˓block
TYPE dnsdist_dyn_blocked counter
dnsdist_dyn_blocked 0
HELP dnsdist_dyn_block_nmg_size Number of dynamic blocks entries
TYPE dnsdist_dyn_block_nmg_size gauge
dnsdist_dyn_block_nmg_size 0
HELP dnsdist_security_status Security status of this software. 0=unknown,
→˓ 1=OK, 2=upgrade recommended, 3=upgrade mandatory
TYPE dnsdist_security_status gauge
dnsdist_security_status 0
HELP dnsdist_doh_query_pipe_full Number of DoH queries dropped because
→˓the internal pipe used to distribute queries was full
TYPE dnsdist_doh_query_pipe_full counter
dnsdist_doh_query_pipe_full 0
HELP dnsdist_doh_response_pipe_full Number of DoH responses dropped
→˓because the internal pipe used to distribute responses was full
TYPE dnsdist_doh_response_pipe_full counter
dnsdist_doh_response_pipe_full 0
HELP dnsdist_outgoing_doh_query_pipe_full Number of outgoing DoH queries
→˓dropped because the internal pipe used to distribute queries was full
TYPE dnsdist_outgoing_doh_query_pipe_full counter
dnsdist_outgoing_doh_query_pipe_full 0
HELP dnsdist_tcp_query_pipe_full Number of TCP queries dropped because
→˓the internal pipe used to distribute queries was full
TYPE dnsdist_tcp_query_pipe_full counter
dnsdist_tcp_query_pipe_full 0
HELP dnsdist_tcp_cross_protocol_query_pipe_full Number of TCP cross-
→˓protocol queries dropped because the internal pipe used to distribute
→˓queries was full
TYPE dnsdist_tcp_cross_protocol_query_pipe_full counter
dnsdist_tcp_cross_protocol_query_pipe_full 0
HELP dnsdist_tcp_cross_protocol_response_pipe_full Number of TCP cross-
→˓protocol responses dropped because the internal pipe used to distribute
→˓queries was full
TYPE dnsdist_tcp_cross_protocol_response_pipe_full counter
dnsdist_tcp_cross_protocol_response_pipe_full 0
HELP dnsdist_latency Histogram of responses by latency (in milliseconds)
TYPE dnsdist_latency histogram
dnsdist_latency_bucket{le="1"} 0
dnsdist_latency_bucket{le="10"} 0
dnsdist_latency_bucket{le="50"} 0
dnsdist_latency_bucket{le="100"} 0

(continues on next page)

17.1. Built-in webserver 57

dnsdist

(continued from previous page)

dnsdist_latency_bucket{le="1000"} 0
dnsdist_latency_bucket{le="+Inf"} 0
dnsdist_latency_sum 0
dnsdist_latency_count 0
HELP dnsdist_server_status Whether this backend is up (1) or down (0)
TYPE dnsdist_server_status gauge
HELP dnsdist_server_queries Amount of queries relayed to server
TYPE dnsdist_server_queries counter
HELP dnsdist_server_responses Amount of responses received from this
→˓server
TYPE dnsdist_server_responses counter
HELP dnsdist_server_noncompliantresponses Amount of non-compliant
→˓responses received from this server
TYPE dnsdist_server_noncompliantresponses counter
HELP dnsdist_server_drops Amount of queries not answered by server
TYPE dnsdist_server_drops counter
HELP dnsdist_server_latency Server's latency when answering questions in
→˓milliseconds
TYPE dnsdist_server_latency gauge
HELP dnsdist_server_senderrors Total number of OS send errors while
→˓relaying queries
TYPE dnsdist_server_senderrors counter
HELP dnsdist_server_outstanding Current number of queries that are
→˓waiting for a backend response
TYPE dnsdist_server_outstanding gauge
HELP dnsdist_server_order The order in which this server is picked
TYPE dnsdist_server_order gauge
HELP dnsdist_server_weight The weight within the order in which this
→˓server is picked
TYPE dnsdist_server_weight gauge
HELP dnsdist_server_tcpdiedsendingquery The number of TCP I/O errors
→˓while sending the query
TYPE dnsdist_server_tcpdiedsendingquery counter
HELP dnsdist_server_tcpdiedreadingresponse The number of TCP I/O errors
→˓while reading the response
TYPE dnsdist_server_tcpdiedreadingresponse counter
HELP dnsdist_server_tcpgaveup The number of TCP connections failing
→˓after too many attempts
TYPE dnsdist_server_tcpgaveup counter
HELP dnsdist_server_tcpconnecttimeouts The number of TCP connect timeouts
TYPE dnsdist_server_tcpconnecttimeouts counter
HELP dnsdist_server_tcpreadtimeouts The number of TCP read timeouts
TYPE dnsdist_server_tcpreadtimeouts counter
HELP dnsdist_server_tcpwritetimeouts The number of TCP write timeouts
TYPE dnsdist_server_tcpwritetimeouts counter
HELP dnsdist_server_tcpcurrentconnections The number of current TCP
→˓connections
TYPE dnsdist_server_tcpcurrentconnections gauge
HELP dnsdist_server_tcpmaxconcurrentconnections The maximum number of
→˓concurrent TCP connections
TYPE dnsdist_server_tcpmaxconcurrentconnections counter
HELP dnsdist_server_tcptoomanyconcurrentconnections Number of times we
→˓had to enforce the maximum number of concurrent TCP connections
TYPE dnsdist_server_tcptoomanyconcurrentconnections counter
HELP dnsdist_server_tcpnewconnections The number of established TCP
→˓connections in total
TYPE dnsdist_server_tcpnewconnections counter
HELP dnsdist_server_tcpreusedconnections The number of times a TCP
→˓connection has been reused
TYPE dnsdist_server_tcpreusedconnections counter
HELP dnsdist_server_tcpavgqueriesperconn The average number of queries
→˓per TCP connection (continues on next page)

58 Chapter 17. Guides

dnsdist

(continued from previous page)

TYPE dnsdist_server_tcpavgqueriesperconn gauge
HELP dnsdist_server_tcpavgconnduration The average duration of a TCP
→˓connection (ms)
TYPE dnsdist_server_tcpavgconnduration gauge
HELP dnsdist_server_tlsresumptions The number of times a TLS session has
→˓been resumed
TYPE dnsdist_server_tlsresumptions counter
HELP dnsdist_server_tcplatency Server's latency when answering TCP
→˓questions in milliseconds
TYPE dnsdist_server_tcplatency gauge
dnsdist_server_status{server="9_9_9_9:443",address="9.9.9.9:443"} 1
dnsdist_server_queries{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_responses{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_noncompliantresponses{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0
dnsdist_server_drops{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_latency{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_tcplatency{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_senderrors{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_outstanding{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_order{server="9_9_9_9:443",address="9.9.9.9:443"} 1
dnsdist_server_weight{server="9_9_9_9:443",address="9.9.9.9:443"} 1
dnsdist_server_tcpdiedsendingquery{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0
dnsdist_server_tcpdiedreadingresponse{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0
dnsdist_server_tcpgaveup{server="9_9_9_9:443",address="9.9.9.9:443"} 0
dnsdist_server_tcpreadtimeouts{server="9_9_9_9:443",address="9.9.9.9:443"}
→˓0
dnsdist_server_tcpwritetimeouts{server="9_9_9_9:443",address="9.9.9.9:443"}
→˓ 0
dnsdist_server_tcpconnecttimeouts{server="9_9_9_9:443",address="9.9.9.9:443
→˓"} 0
dnsdist_server_tcpcurrentconnections{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0
dnsdist_server_tcpmaxconcurrentconnections{server="9_9_9_9:443",address="9.
→˓9.9.9:443"} 1
dnsdist_server_tcptoomanyconcurrentconnections{server="9_9_9_9:443",
→˓address="9.9.9.9:443"} 0
dnsdist_server_tcpnewconnections{server="9_9_9_9:443",address="9.9.9.9:443
→˓"} 19
dnsdist_server_tcpreusedconnections{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0
dnsdist_server_tcpavgqueriesperconn{server="9_9_9_9:443",address="9.9.9.
→˓9:443"} 0.173831
dnsdist_server_tcpavgconnduration{server="9_9_9_9:443",address="9.9.9.9:443
→˓"} 3.92628
dnsdist_server_tlsresumptions{server="9_9_9_9:443",address="9.9.9.9:443"}
→˓18
HELP dnsdist_frontend_queries Amount of queries received by this frontend
TYPE dnsdist_frontend_queries counter
HELP dnsdist_frontend_noncompliantqueries Amount of non-compliant
→˓queries received by this frontend
TYPE dnsdist_frontend_noncompliantqueries counter
HELP dnsdist_frontend_responses Amount of responses sent by this frontend
TYPE dnsdist_frontend_responses counter
HELP dnsdist_frontend_tcpdiedreadingquery Amount of TCP connections
→˓terminated while reading the query from the client
TYPE dnsdist_frontend_tcpdiedreadingquery counter
HELP dnsdist_frontend_tcpdiedsendingresponse Amount of TCP connections
→˓terminated while sending a response to the client

(continues on next page)

17.1. Built-in webserver 59

dnsdist

(continued from previous page)

TYPE dnsdist_frontend_tcpdiedsendingresponse counter
HELP dnsdist_frontend_tcpgaveup Amount of TCP connections terminated
→˓after too many attempts to get a connection to the backend
TYPE dnsdist_frontend_tcpgaveup counter
HELP dnsdist_frontend_tcpclienttimeouts Amount of TCP connections
→˓terminated by a timeout while reading from the client
TYPE dnsdist_frontend_tcpclienttimeouts counter
HELP dnsdist_frontend_tcpdownstreamtimeouts Amount of TCP connections
→˓terminated by a timeout while reading from the backend
TYPE dnsdist_frontend_tcpdownstreamtimeouts counter
HELP dnsdist_frontend_tcpcurrentconnections Amount of current incoming
→˓TCP connections from clients
TYPE dnsdist_frontend_tcpcurrentconnections gauge
HELP dnsdist_frontend_tcpmaxconcurrentconnections Maximum number of
→˓concurrent incoming TCP connections from clients
TYPE dnsdist_frontend_tcpmaxconcurrentconnections counter
HELP dnsdist_frontend_tcpavgqueriesperconnection The average number of
→˓queries per TCP connection
TYPE dnsdist_frontend_tcpavgqueriesperconnection gauge
HELP dnsdist_frontend_tcpavgconnectionduration The average duration of a
→˓TCP connection (ms)
TYPE dnsdist_frontend_tcpavgconnectionduration gauge
HELP dnsdist_frontend_tlsqueries Number of queries received by dnsdist
→˓over TLS, by TLS version
TYPE dnsdist_frontend_tlsqueries counter
HELP dnsdist_frontend_tlsnewsessions Amount of new TLS sessions
→˓negotiated
TYPE dnsdist_frontend_tlsnewsessions counter
HELP dnsdist_frontend_tlsresumptions Amount of TLS sessions resumed
TYPE dnsdist_frontend_tlsresumptions counter
HELP dnsdist_frontend_tlsunknownticketkeys Amount of attempts to resume
→˓TLS session from an unknown key (possibly expired)
TYPE dnsdist_frontend_tlsunknownticketkeys counter
HELP dnsdist_frontend_tlsinactiveticketkeys Amount of TLS sessions
→˓resumed from an inactive key
TYPE dnsdist_frontend_tlsinactiveticketkeys counter
HELP dnsdist_frontend_tlshandshakefailures Amount of TLS handshake
→˓failures
TYPE dnsdist_frontend_tlshandshakefailures counter
dnsdist_frontend_queries{frontend="127.0.0.1:853",proto="TCP (DNS over TLS)
→˓",thread="0"} 0
dnsdist_frontend_noncompliantqueries{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_responses{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0"} 0
dnsdist_frontend_tcpdiedreadingquery{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpdiedsendingresponse{frontend="127.0.0.1:853",proto=
→˓"TCP (DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpgaveup{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0"} 0
dnsdist_frontend_tcpclienttimeouts{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpdownstreamtimeouts{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpcurrentconnections{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpmaxconcurrentconnections{frontend="127.0.0.1:853",
→˓proto="TCP (DNS over TLS)",thread="0"} 0
dnsdist_frontend_tcpavgqueriesperconnection{frontend="127.0.0.1:853",proto=
→˓"TCP (DNS over TLS)",thread="0"} 0

(continues on next page)

60 Chapter 17. Guides

dnsdist

(continued from previous page)

dnsdist_frontend_tcpavgconnectionduration{frontend="127.0.0.1:853",proto=
→˓"TCP (DNS over TLS)",thread="0"} 0
dnsdist_frontend_tlsnewsessions{frontend="127.0.0.1:853",proto="TCP (DNS
→˓over TLS)",thread="0"} 0
dnsdist_frontend_tlsresumptions{frontend="127.0.0.1:853",proto="TCP (DNS
→˓over TLS)",thread="0"} 0
dnsdist_frontend_tlsunknownticketkeys{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tlsinactiveticketkeys{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0"} 0
dnsdist_frontend_tlsqueries{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0",tls="tls10"} 0
dnsdist_frontend_tlsqueries{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0",tls="tls11"} 0
dnsdist_frontend_tlsqueries{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0",tls="tls12"} 0
dnsdist_frontend_tlsqueries{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0",tls="tls13"} 0
dnsdist_frontend_tlsqueries{frontend="127.0.0.1:853",proto="TCP (DNS over
→˓TLS)",thread="0",tls="unknown"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="dhKeyTooSmall"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="inappropriateFallBack"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="noSharedCipher"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="unknownCipherType"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="unknownKeyExchangeType"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="unknownProtocol"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="unsupportedEC"} 0
dnsdist_frontend_tlshandshakefailures{frontend="127.0.0.1:853",proto="TCP
→˓(DNS over TLS)",thread="0",error="unsupportedProtocol"} 0
dnsdist_frontend_queries{frontend="[::1]:443",proto="TCP (DNS over HTTPS)",
→˓thread="0"} 0
dnsdist_frontend_noncompliantqueries{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0"} 0
dnsdist_frontend_responses{frontend="[::1]:443",proto="TCP (DNS over HTTPS)
→˓",thread="0"} 0
dnsdist_frontend_tcpdiedreadingquery{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpdiedsendingresponse{frontend="[::1]:443",proto="TCP
→˓(DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpgaveup{frontend="[::1]:443",proto="TCP (DNS over HTTPS)
→˓",thread="0"} 0
dnsdist_frontend_tcpclienttimeouts{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpdownstreamtimeouts{frontend="[::1]:443",proto="TCP
→˓(DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpcurrentconnections{frontend="[::1]:443",proto="TCP
→˓(DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpmaxconcurrentconnections{frontend="[::1]:443",proto=
→˓"TCP (DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpavgqueriesperconnection{frontend="[::1]:443",proto=
→˓"TCP (DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tcpavgconnectionduration{frontend="[::1]:443",proto="TCP
→˓(DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tlsnewsessions{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0"} 0 (continues on next page)

17.1. Built-in webserver 61

dnsdist

(continued from previous page)

dnsdist_frontend_tlsresumptions{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0"} 0
dnsdist_frontend_tlsunknownticketkeys{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0"} 0
dnsdist_frontend_tlsinactiveticketkeys{frontend="[::1]:443",proto="TCP
→˓(DNS over HTTPS)",thread="0"} 0
dnsdist_frontend_tlsqueries{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0",tls="tls10"} 0
dnsdist_frontend_tlsqueries{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0",tls="tls11"} 0
dnsdist_frontend_tlsqueries{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0",tls="tls12"} 0
dnsdist_frontend_tlsqueries{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0",tls="tls13"} 0
dnsdist_frontend_tlsqueries{frontend="[::1]:443",proto="TCP (DNS over
→˓HTTPS)",thread="0",tls="unknown"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="dhKeyTooSmall"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="inappropriateFallBack"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="noSharedCipher"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="unknownCipherType"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="unknownKeyExchangeType"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="unknownProtocol"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="unsupportedEC"} 0
dnsdist_frontend_tlshandshakefailures{frontend="[::1]:443",proto="TCP (DNS
→˓over HTTPS)",thread="0",error="unsupportedProtocol"} 0
dnsdist_frontend_queries{frontend="127.0.0.1:53",proto="UDP",thread="0"} 0
dnsdist_frontend_noncompliantqueries{frontend="127.0.0.1:53",proto="UDP",
→˓thread="0"} 0
dnsdist_frontend_responses{frontend="127.0.0.1:53",proto="UDP",thread="0"}
→˓0
dnsdist_frontend_queries{frontend="127.0.0.1:53",proto="TCP",thread="0"} 0
dnsdist_frontend_noncompliantqueries{frontend="127.0.0.1:53",proto="TCP",
→˓thread="0"} 0
dnsdist_frontend_responses{frontend="127.0.0.1:53",proto="TCP",thread="0"}
→˓0
dnsdist_frontend_tcpdiedreadingquery{frontend="127.0.0.1:53",proto="TCP",
→˓thread="0"} 0
dnsdist_frontend_tcpdiedsendingresponse{frontend="127.0.0.1:53",proto="TCP
→˓",thread="0"} 0
dnsdist_frontend_tcpgaveup{frontend="127.0.0.1:53",proto="TCP",thread="0"}
→˓0
dnsdist_frontend_tcpclienttimeouts{frontend="127.0.0.1:53",proto="TCP",
→˓thread="0"} 0
dnsdist_frontend_tcpdownstreamtimeouts{frontend="127.0.0.1:53",proto="TCP",
→˓thread="0"} 0
dnsdist_frontend_tcpcurrentconnections{frontend="127.0.0.1:53",proto="TCP",
→˓thread="0"} 0
dnsdist_frontend_tcpmaxconcurrentconnections{frontend="127.0.0.1:53",proto=
→˓"TCP",thread="0"} 0
dnsdist_frontend_tcpavgqueriesperconnection{frontend="127.0.0.1:53",proto=
→˓"TCP",thread="0"} 0
dnsdist_frontend_tcpavgconnectionduration{frontend="127.0.0.1:53",proto=
→˓"TCP",thread="0"} 0
HELP dnsdist_frontend_http_connects Number of DoH TCP connections
→˓established to this frontend (continues on next page)

62 Chapter 17. Guides

dnsdist

(continued from previous page)

TYPE dnsdist_frontend_http_connects counter
HELP dnsdist_frontend_doh_http_method_queries Number of DoH queries
→˓received by dnsdist, by HTTP method
TYPE dnsdist_frontend_doh_http_method_queries counter
HELP dnsdist_frontend_doh_http_version_queries Number of DoH queries
→˓received by dnsdist, by HTTP version
TYPE dnsdist_frontend_doh_http_version_queries counter
HELP dnsdist_frontend_doh_bad_requests Number of requests that could not
→˓be converted to a DNS query
TYPE dnsdist_frontend_doh_bad_requests counter
HELP dnsdist_frontend_doh_responses Number of responses sent, by type
TYPE dnsdist_frontend_doh_responses counter
HELP dnsdist_frontend_doh_version_status_responses Number of requests
→˓that could not be converted to a DNS query
TYPE dnsdist_frontend_doh_version_status_responses counter
dnsdist_frontend_http_connects{frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_http_method_queries{method="get",frontend="[::1]:443",
→˓thread="0"} 0
dnsdist_frontend_doh_http_method_queries{method="post",frontend="[::1]:443
→˓",thread="0"} 0
dnsdist_frontend_doh_http_version_queries{version="1",frontend="[::1]:443",
→˓thread="0"} 0
dnsdist_frontend_doh_http_version_queries{version="2",frontend="[::1]:443",
→˓thread="0"} 0
dnsdist_frontend_doh_bad_requests{frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_responses{type="error",frontend="[::1]:443",thread="0
→˓"} 0
dnsdist_frontend_doh_responses{type="redirect",frontend="[::1]:443",thread=
→˓"0"} 0
dnsdist_frontend_doh_responses{type="valid",frontend="[::1]:443",thread="0
→˓"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="200",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="400",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="403",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="500",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="502",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="1",status="other
→˓",frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="200",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="400",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="403",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="500",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="502",
→˓frontend="[::1]:443",thread="0"} 0
dnsdist_frontend_doh_version_status_responses{httpversion="2",status="other
→˓",frontend="[::1]:443",thread="0"} 0
HELP dnsdist_pool_servers Number of servers in that pool
TYPE dnsdist_pool_servers gauge
HELP dnsdist_pool_active_servers Number of available servers in that pool
TYPE dnsdist_pool_active_servers gauge
HELP dnsdist_pool_cache_size Maximum number of entries that this cache
→˓can hold

(continues on next page)

17.1. Built-in webserver 63

dnsdist

(continued from previous page)

TYPE dnsdist_pool_cache_size gauge
HELP dnsdist_pool_cache_entries Number of entries currently present in
→˓that cache
TYPE dnsdist_pool_cache_entries gauge
HELP dnsdist_pool_cache_hits Number of hits from that cache
TYPE dnsdist_pool_cache_hits counter
HELP dnsdist_pool_cache_misses Number of misses from that cache
TYPE dnsdist_pool_cache_misses counter
HELP dnsdist_pool_cache_deferred_inserts Number of insertions into that
→˓cache skipped because it was already locked
TYPE dnsdist_pool_cache_deferred_inserts counter
HELP dnsdist_pool_cache_deferred_lookups Number of lookups into that
→˓cache skipped because it was already locked
TYPE dnsdist_pool_cache_deferred_lookups counter
HELP dnsdist_pool_cache_lookup_collisions Number of lookups into that
→˓cache that triggered a collision (same hash but different entry)
TYPE dnsdist_pool_cache_lookup_collisions counter
HELP dnsdist_pool_cache_insert_collisions Number of insertions into that
→˓cache that triggered a collision (same hash but different entry)
TYPE dnsdist_pool_cache_insert_collisions counter
HELP dnsdist_pool_cache_ttl_too_shorts Number of insertions into that
→˓cache skipped because the TTL of the answer was not long enough
TYPE dnsdist_pool_cache_ttl_too_shorts counter
HELP dnsdist_pool_cache_cleanup_count_total Number of times the cache
→˓has been scanned to remove expired entries, if any
TYPE dnsdist_pool_cache_cleanup_count_total counter
dnsdist_pool_servers{pool="_default_"} 1
dnsdist_pool_active_servers{pool="_default_"} 1
dnsdist_pool_cache_size{pool="_default_"} 100
dnsdist_pool_cache_entries{pool="_default_"} 0
dnsdist_pool_cache_hits{pool="_default_"} 0
dnsdist_pool_cache_misses{pool="_default_"} 0
dnsdist_pool_cache_deferred_inserts{pool="_default_"} 0
dnsdist_pool_cache_deferred_lookups{pool="_default_"} 0
dnsdist_pool_cache_lookup_collisions{pool="_default_"} 0
dnsdist_pool_cache_insert_collisions{pool="_default_"} 0
dnsdist_pool_cache_ttl_too_shorts{pool="_default_"} 0
dnsdist_pool_cache_cleanup_count_total{pool="_default_"} 0
HELP dnsdist_rule_hits Number of hits of that rule
TYPE dnsdist_rule_hits counter
HELP dnsdist_dynblocks_nmg_top_offenders_hits_per_second Number of hits
→˓per second blocked by Dynamic Blocks (netmasks) for the top offenders,
→˓averaged over the last 60s
TYPE dnsdist_dynblocks_nmg_top_offenders_hits_per_second gauge
HELP dnsdist_dynblocks_smt_top_offenders_hits_per_second Number of this
→˓per second blocked by Dynamic Blocks (suffixes) for the top offenders,
→˓averaged over the last 60s
TYPE dnsdist_dynblocks_smt_top_offenders_hits_per_second gauge
HELP dnsdist_info Info from dnsdist, value is always 1
TYPE dnsdist_info gauge
dnsdist_info{version="1.7.3"} 1

Example prometheus configuration:

This is just the scrape job description, for details see the prometheus documentation.

job_name: dnsdist
scrape_interval: 10s
scrape_timeout: 2s
metrics_path: /metrics
basic_auth:

(continues on next page)

64 Chapter 17. Guides

dnsdist

(continued from previous page)

username: dontcare
password: yoursecret

DELETE /api/v1/cache?pool=<pool-name>&name=<dns-name>[&type=<dns-type>][&suffix=]
New in version 1.8.0.

Allows removing entries from a cache. The pool to which the cache is associated should be specified in
the pool parameter, and the name to remove in the name parameter. By default only entries matching the
exact name will be removed, but it is possible to remove all entries below that name by passing the suffix
parameter set to any value. By default entries for all types for the name are removed, but it is possible to
only remove entries for a specific type by passing the type parameter set to the requested type. Supported
values are DNS type names as a strings (AAAA), or numerical values (as either #64 or TYPE64).

Example request:

DELETE /api/v1/cache?pool=&name=free.fr HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Length: 0
Host: localhost:8080
X-API-Key: supersecretAPIkey

Example response:

HTTP/1.1 200 OK
Connection: close
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline'
Content-Type: application/json
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

{
"count": "1",
"status": "purged"

}

GET /api/v1/servers/localhost
Get a quick overview of several parameters.

Response JSON Object

• acl (string) – A string of comma-separated netmasks currently allowed by the ACL.

• cache-hit-response-rules (list) – A list of ResponseRule objects ap-
plied on cache hits

• self-answered-response-rules (list) – A list of ResponseRule objects
applied on self-answered queries

• daemon_type (string) – The type of daemon, always “dnsdist”

• frontends (list) – A list of Frontend objects

• pools (list) – A list of Pool objects

• response-rules (list) – A list of ResponseRule objects

• rules (list) – A list of Rule objects

17.1. Built-in webserver 65

dnsdist

• servers (list) – A list of Server objects

• version (string) – The running version of dnsdist

GET /api/v1/servers/localhost/statistics
Returns a list of all statistics as StatisticItem.

GET /api/v1/servers/localhost/config
Returns a list of ConfigSetting objects.

GET /api/v1/servers/localhost/config/allow-from
Gets you the allow-from ConfigSetting, who’s value is a list of strings of all the netmasks in the
ACL.

Example request:

GET /api/v1/servers/localhost/config/allow-from HTTP/1.1
X-API-Key: supersecretAPIkey

Example response:

HTTP/1.1 200 OK
Connection: close
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline'
Content-Type: application/json
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

{
"name": "allow-from",
"type": "ConfigSetting",
"value": [

"fc00::/7",
"169.254.0.0/16",
"100.64.0.0/10",
"fe80::/10",
"10.0.0.0/8",
"127.0.0.0/8",
"::1/128",
"172.16.0.0/12",
"192.168.0.0/16"

]
}

PUT /api/v1/servers/localhost/config/allow-from
Allows you to update the allow-from ACL with a list of netmasks.

Make sure you made the API writable using setAPIWritable(). Changes to the ACL are directly
applied, no restart is required.

Example request:

PUT /api/v1/servers/localhost/config/allow-from HTTP/1.1
Content-Length: 37
Content-Type: application/json
X-API-Key: supersecretAPIkey

{
"value": [

(continues on next page)

66 Chapter 17. Guides

dnsdist

(continued from previous page)

"127.0.0.0/8",
"::1/128"

]
}

Example response:

HTTP/1.1 200 OK
Connection: close
Content-Security-Policy: default-src 'self'; style-src 'self' 'unsafe-
→˓inline'
Content-Type: application/json
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-Permitted-Cross-Domain-Policies: none
X-Xss-Protection: 1; mode=block

{
"name": "allow-from",
"type": "ConfigSetting",
"value": [

"127.0.0.0/8",
"::1/128"

]
}

GET /api/v1/servers/localhost/pool?name=pool-name
New in version 1.6.1.

Get a quick overview of the pool named “pool-name”.

Response JSON Object

• list – A list of metrics related to that pool

• servers (list) – A list of Server objects present in that pool

GET /api/v1/servers/localhost/rings?maxQueries=NUM&maxResponses=NUM
New in version 1.9.0.

Get the most recent queries and responses from the in-memory ring buffers. Returns up to maxQueries
query entries if set, up to maxResponses responses if set, and the whole content of the ring buffers
otherwise.

Response JSON Object

• queries (list) – The list of the most recent queries, as RingEntry objects

• responses (list) – The list of the most recent responses, as RingEntry objects

JSON Objects

ConfigSetting
An object representing a global configuration element. The following configuration are returned:

• acl The currently configured ACLs

• control-socket The currently configured console address

• ecs-override

• ecs-source-prefix-v4 The currently configured setECSSourcePrefixV4()

17.1. Built-in webserver 67

dnsdist

• ecs-source-prefix-v6 The currently configured setECSSourcePrefixV6()

• fixup-case

• max-outstanding

• server-policy The currently set Loadbalancing and Server Policies

• stale-cache-entries-ttl

• tcp-recv-timeout

• tcp-send-timeout

• truncate-tc

• verbose

• verbose-health-checks The currently configured setVerboseHealthChecks()

Object Properties

• name (string) – The name of the setting

• type (string) – “ConfigSetting”

• value (string) – The value for this setting

DoHFrontend
A description of a DoH bind dnsdist is listening on.

Object Properties

• bad-requests (integer) – Number of requests that could not be converted to a
DNS query

• error-responses (integer) – Number of HTTP responses sent with a non-200
code

• get-queries (integer) – Number of DoH queries received via the GET HTTP
method

• http-connects (integer) – Number of DoH TCP connections established to this
frontend

• http1-queries (integer) – Number of DoH queries received over HTTP/1 (or
connection attempts with a HTTP/1.1 ALPN when the nghttp2 provider is used)

• http1-x00-responses (integer) – Number of DoH responses sent, over
HTTP/1, per response code (200, 400, 403, 500, 502)

• http1-other-responses (integer) – Number of DoH responses sent, over
HTTP/1, with another response code

• http2-queries (integer) – Number of DoH queries received over HTTP/2

• http2-x00-responses (integer) – Number of DoH responses sent, over
HTTP/2, per response code (200, 400, 403, 500, 502)

• http1-other-responses – Number of DoH responses sent, over HTTP/2, with
another response code

• post-queries (integer) – Number of DoH queries received via the POST HTTP
method

• redirect-responses (integer) – Number of HTTP redirect responses sent

• valid-responses (integer) – Number of valid DoH (2xx) responses sent

Frontend
A description of a bind dnsdist is listening on.

68 Chapter 17. Guides

dnsdist

Object Properties

• address (string) – IP and port that is listened on

• id (integer) – Internal identifier

• nonCompliantQueries (integer) – Amount of non-compliant queries received
by this frontend

• queries (integer) – The number of received queries on this bind

• responses (integer) – Amount of responses sent by this frontend

• tcp (boolean) – true if this is a TCP bind

• tcpAvgConnectionDuration (integer) – The average duration of a TCP con-
nection (ms)

• tcpAvgQueriesPerConnection (integer) – The average number of queries
per TCP connection

• tcpClientTimeouts (integer) – Amount of TCP connections terminated by a
timeout while reading from the client

• tcpCurrentConnections (integer) – Amount of current incoming TCP con-
nections from clients

• tcpDiedReadingQuery (integer) – Amount of TCP connections terminated
while reading the query from the client

• tcpDiedSendingResponse (integer) – Amount of TCP connections termi-
nated while sending a response to the client

• tcpDownstreamTimeouts (integer) – Amount of TCP connections terminated
by a timeout while reading from the backend

• tcpGaveUp (integer) – Amount of TCP connections terminated after too many
attempts to get a connection to the backend

• tcpMaxConcurrentConnections (integer) – Maximum number of concur-
rent incoming TCP connections from clients

• tls10Queries (integer) – Number of queries received by dnsdist over TLS 1.0

• tls11Queries (integer) – Number of queries received by dnsdist over TLS 1.1

• tls12Queries (integer) – Number of queries received by dnsdist over TLS 1.2

• tls13Queries (integer) – Number of queries received by dnsdist over TLS 1.3

• tlsHandshakeFailuresDHKeyTooSmall (integer) – Amount of TLS con-
nections where the client has negotiated a not strong enough diffie-hellman key during
the TLS handshake

• tlsHandshakeFailuresInappropriateFallBack (integer) – Amount
of TLS connections where the client tried to negotiate an invalid, too old, TLS version

• tlsHandshakeFailuresNoSharedCipher (integer) – Amount of TLS con-
nections were no cipher shared by both the client and the server could been found during
the TLS handshake

• tlsHandshakeFailuresUnknownCipher (integer) – Amount of TLS con-
nections where the client has tried to negotiate an unknown TLS cipher

• tlsHandshakeFailuresUnknownKeyExchangeType (integer) – Amount
of TLS connections where the client has tried to negotiate an unknown TLS key-
exchange mechanism

• tlsHandshakeFailuresUnknownProtocol (integer) – Amount of TLS
connections where the client has tried to negotiate an unknown TLS version

17.1. Built-in webserver 69

dnsdist

• tlsHandshakeFailuresUnsupportedEC (integer) – Amount of TLS con-
nections where the client has tried to negotiate an unsupported elliptic curve

• tlsHandshakeFailuresUnsupportedProtocol (integer) – Amount of
TLS connections where the client has tried to negotiate a unsupported TLS version

• tlsInactiveTicketKey (integer) – Amount of TLS sessions resumed from an
inactive key

• tlsNewSessions (integer) – Amount of new TLS sessions negotiated

• tlsResumptions (integer) – Amount of TLS sessions resumed

• tlsUnknownQueries (integer) – Number of queries received by dnsdist over an
unknown TLS version

• tlsUnknownTicketKey (integer) – Amount of attempts to resume TLS session
from an unknown key (possibly expired)

• type (string) – UDP, TCP, DoT or DoH

• udp (boolean) – true if this is a UDP bind

Pool
A description of a pool of backend servers.

Object Properties

• id (integer) – Internal identifier

• cacheCleanupCount (integer) – Number of times that cache was scanned for
expired entries, or just to remove entries because it is full

• cacheDeferredInserts (integer) – The number of times an entry could not
be inserted in the associated cache, if any, because of a lock

• cacheDeferredLookups (integer) – The number of times an entry could not
be looked up from the associated cache, if any, because of a lock

• cacheEntries (integer) – The current number of entries in the associated cache,
if any

• cacheHits (integer) – The number of cache hits for the associated cache, if any

• cacheInsertCollisions (integer) – The number of times an entry could not
be inserted into the cache because a different entry with the same hash already existed

• cacheLookupCollisions (integer) – The number of times an entry retrieved
from the cache based on the query hash did not match the actual query

• cacheMisses (integer) – The number of cache misses for the associated cache, if
any

• cacheSize (integer) – The maximum number of entries in the associated cache,
if any

• cacheTTLTooShorts (integer) – The number of times an entry could not be
inserted into the cache because its TTL was set below the minimum threshold

• name (string) – Name of the pool

• serversCount (integer) – Number of backends in this pool

Rule
This represents a policy that is applied to queries

Object Properties

• action (string) – The action taken when the rule matches (e.g. “to pool abuse”)

• action-stats (dict) – A list of statistics whose content varies depending on the
kind of rule

70 Chapter 17. Guides

dnsdist

• creationOrder (integer) – The order in which a rule has been created, mostly
used for automated tools

• id (integer) – The position of this rule

• matches (integer) – How many times this rule was hit

• name (string) – The name assigned to this rule by the administrator, if any

• rule (string) – The matchers for the packet (e.g. “qname==bad-domain1.example.,
bad-domain2.example.”)

• uuid (string) – The UUID of this rule

ResponseRule
This represents a policy that is applied to responses

Object Properties

• action (string) – The action taken when the rule matches (e.g. “drop”)

• id (integer) – The identifier (or order) of this rule

• matches (integer) – How many times this rule was hit

• rule (string) – The matchers for the packet (e.g. “qname==bad-domain1.example.,
bad-domain2.example.”)

Server
This object represents a backend server.

Object Properties

• address (string) – The remote IP and port

• id (integer) – Internal identifier

• latency (integer) – The current latency of this backend server for UDP queries,
in milliseconds

• name (string) – The name of this server

• integer – nonCompliantResponses: Amount of non-compliant responses

• order (integer) – Order number

• outstanding (integer) – Number of currently outstanding queries

• pools ([string]) – The pools this server belongs to

• protocol (string) – The protocol used by this server (Do53, DoT, DoH)

• qps (integer) – The current number of queries per second to this server

• qpsLimit (integer) – The configured maximum number of queries per second

• queries (integer) – Total number of queries sent to this backend

• responses (integer) – Amount of responses received from this server

• reuseds (integer) – Number of queries for which a response was not received in
time

• sendErrors (integer) – Number of network errors while sending a query to this
server

• state (string) – The state of the server (e.g. “DOWN” or “up”)

• tcpAvgConnectionDuration (integer) – The average duration of a TCP con-
nection (ms)

• tcpAvgQueriesPerConnection (integer) – The average number of queries
per TCP connection

17.1. Built-in webserver 71

dnsdist

• tcpConnectTimeouts (integer) – The number of TCP connect timeouts

• tcpCurrentConnections (integer) – The number of current TCP connections

• tcpDiedReadingResponse (integer) – The number of TCP I/O errors while
reading the response

• tcpDiedSendingQuery (integer) – The number of TCP I/O errors while send-
ing the query

• tcpGaveUp (integer) – The number of TCP connections failing after too many
attempts

• tcpLatency (integer) – Server’s latency when answering TCP questions in mil-
liseconds

• tcpMaxConcurrentConnections (integer) – The maximum number of con-
current TCP connections

• tcpNewConnections (integer) – The number of established TCP connections in
total

• tcpReadTimeouts (integer) – The number of TCP read timeouts

• tcpReusedConnections (integer) – The number of times a TCP connection
has been reused

• tcpTooManyConcurrentConnections (integer) – Number of times we had
to enforce the maximum number of concurrent TCP connections

• tcpWriteTimeouts (integer) – The number of TCP write timeouts

• tlsResumptions (integer) – The number of times a TLS session has been re-
sumed

• weight (integer) – The weight assigned to this server

• dropRate (float) – The amount of packets dropped (timing out) per second by this
server

• healthCheckFailures (integer) – Number of health check attempts that failed
(total)

• healthCheckFailureParsing (integer) – Number of health check attempts
that failed because the payload could not be parsed

• healthCheckFailureTimeout (integer) – Number of health check attempts
that failed because the response was not received in time

• healthCheckFailureNetwork (integer) – Number of health check attempts
that failed because of a network error

• healthCheckFailureMismatch (integer) – Number of health check attempts
that failed because the ID, qname, qtype or qclass did not match

• healthCheckFailureInvalid (integer) – Number of health check attempts
that failed because the DNS response was not valid

StatisticItem
This represents a statistics element.

Object Properties

• name (string) – The name of this statistic. See Statistics

• type (string) – “StatisticItem”

• value (integer) – The value for this item

RingEntry
This represents an entry in the in-memory ring buffers.

72 Chapter 17. Guides

dnsdist

Object Properties

• age (float) – How long ago was the query or response received, in seconds

• id (integer) – The DNS ID

• name (string) – The requested domain name

• requestor (string) – The client IP and port

• size (integer) – The size of the query or response

• qtype (integer) – The requested DNS type

• protocol (string) – The DNS protocol the query or response was received over

• rd (boolean) – The RD flag

• mac (string) – The MAC address of the device sending the query

• latency (float) – The time it took for the response to be sent back to the client, in
microseconds

• rcode (int) – The response code

• tc (boolean) – The TC flag

• aa (boolean) – The AA flag

• answers (integer) – The number of records in the answer section of the response

• backend (string) – The IP and port of the backend that returned the response, or
“Cache” if it was a cache-hit

17.2 Server pools

dnsdist has the concept to “server pools”, any number of servers can belong to a group. A default pool, identified
by the empty string '' is always present, and newServer without a pool argument will assign the new server to
that pool.

Let’s say we know we’re getting a whole bunch of traffic for a domain used in DoS attacks, for example ‘exam-
ple.com’. We can do two things with this kind of traffic. Either we block it outright, like this:

addAction("bad-domain.example.", DropAction())

Or we configure a server pool dedicated to receiving the nasty stuff:

newServer({address="192.0.2.3", pool="abuse"}) -- Add a backend server
→˓with address 192.0.2.3 and assign it to the "abuse" pool
addAction({'bad-domain1.example', 'bad-domain2.example.'}, PoolAction("abuse")) --
→˓Send all queries for "bad-domain1.example." and "bad-domain2.example" to the
→˓"abuse" pool

The wonderful thing about this last solution is that it can also be used for things where a domain might possibly
be legit, but it is still causing load on the system and slowing down the internet for everyone. With such an abuse
server, ‘bad traffic’ still gets a chance of an answer, but without impacting the rest of the world (too much).

We can similarly add clients to the abuse server:

addAction({"192.168.12.0/24", "192.168.13.14"}, PoolAction("abuse"))

To define a pool that should receive only a QPS-limited amount of traffic, do:

addAction("com.", QPSPoolAction(10000, "gtld-cluster"))

17.2. Server pools 73

dnsdist

Traffic exceeding the QPS limit will not match that rule, and subsequent rules will apply normally.

Servers can be added to or removed from pools with the Server:addPool() and Server:rmPool()
functions respectively:

getServer(4):addPool("abuse")
getServer(4):rmPool("abuse")

17.3 Loadbalancing and Server Policies

dnsdist selects the server (if there are multiple eligible) to send queries to based on the configured policy. Only
servers that are marked as ‘up’, either forced so by the administrator or as the result of the last health check, might
be selected.

17.3.1 Built-in Policies

leastOutstanding

The default load balancing policy is called leastOutstanding, which means the server with the least queries
‘in the air’ is picked. The exact selection algorithm is:

• pick the server with the least queries ‘in the air’ ;

• in case of a tie, pick the one with the lowest configured ‘order’ ;

• in case of a tie, pick the one with the lowest measured latency (over an average on the last 128 queries
answered by that server).

firstAvailable

The firstAvailable policy, picks the first available server that has not exceeded its QPS limit, ordered by
increasing ‘order’. If all servers are above their QPS limit, a server is selected based on the leastOutstanding
policy. For now this is the only policy using the QPS limit.

wrandom

A further policy, wrandom assigns queries randomly, but based on the weight parameter passed to
newServer().

For example, if two servers are available, the first one with a weight of 2 and the second one with a weight of 1
(the default), the first one should get two-thirds of the incoming queries and the second one the remaining third.

Since 1.5.0, a bounded-load version is also supported, trying to prevent one server from receiving much more
queries than intended, even if the distribution of queries is not perfect. This “weighted random with bounded
loads” algorithm is enabled by setting setWeightedBalancingFactor() to a value other than 0, which is
the default. This value is the maximum number of outstanding queries that a given server can have at a given time,
as a ratio of the total number of outstanding queries for all the active servers in the pool, pondered by the weight
of the server.

The algorithm will try to select a server randomly, as is done when no bounded-load is set, but will disqualify
all servers that have more outstanding queries than intended times the factor, until a suitable server is found. The
higher the factor, the more imbalance between the servers is allowed.

For example, if we have two servers, with respective weights of 1 and 4, we expect the first server to get a fifth of
the queries, and the second one 4/5. As the random distribution is not perfect, some server might get more queries
than expected. Setting setWeightedBalancingFactor() to 1.1 limits the imbalance between the ratio of
outstanding queries actually handled by a server and the expected number, so in this example the first server would
not be allowed to handle more than 1.1/5 of all the outstanding queries at a given time.

74 Chapter 17. Guides

dnsdist

whashed

whashed is a similar weighted policy, but assigns questions with identical hash to identical servers, allowing for
better cache concentration (‘sticky queries’). The current hash algorithm is based on the qname of the query.

setWHashedPertubation(value)
Set the hash perturbation value to be used in the whashed policy instead of a random one, allowing to have
consistent whashed results on different instances.

Since 1.5.0, a bounded-load version is also supported, trying to prevent one server from receiving much more
queries than intended, even if the distribution of queries is not perfect. This “weighted hashing with bounded
loads” algorithm is enabled by setting setWeightedBalancingFactor() to a value other than 0, which is
the default. This value is the maximum number of outstanding queries that a given server can have at a given time,
as a ratio of the total number of outstanding queries for all the active servers in the pool, pondered by the weight
of the server.

The algorithm will try to select a server based on the hash of the qname, as is done when no bounded-load is set,
but will disqualify all servers that have more outstanding queries than intended times the factor, until a suitable
server is found. The higher the factor, the more imbalance between the servers is allowed.

For example, if we have two servers, with respective weights of 1 and 4, we expect the first server to get a fifth of
the queries, and the second one 4/5. If the qname of the queries are not perfectly distributed, some server might
get more queries than expected. Setting setWeightedBalancingFactor() to 1.1 limits the imbalance
between the ratio of outstanding queries actually handled by a server and the expected number, so in this example
the first server would not be allowed to handle more than 1.1/5 of all the outstanding queries at a given time.

chashed

chashed is a consistent hashing distribution policy. Identical questions with identical hashes will be distributed
to the same servers. But unlike the whashed policy, this distribution will keep consistent over time. Adding or
removing servers will only remap a small part of the queries.

Increasing the weight of servers to a value larger than the default is required to get a good distribution of queries.
Small values like 100 or 1000 should be enough to get a correct distribution. This is a side-effect of the internal
implementation of the consistent hashing algorithm, which assigns as many points on a circle to a server than its
weight, and distributes a query to the server who has the closest point on the circle from the hash of the query’s
qname. Therefore having very few points, as is the case with the default weight of 1, leads to a poor distribution
of queries.

You can also set the hash perturbation value, see setWHashedPertubation(). To achieve consistent dis-
tribution over dnsdist restarts, you will also need to explicitly set the backend’s UUIDs with the id option
of newServer(). You can get the current UUIDs of your backends by calling showServers() with the
showUUIDs=true option.

Since 1.5.0, a bounded-load version is also supported, preventing one server from receiving much more queries
than intended, even if the distribution of queries is not perfect. This “consistent hashing with bounded loads”
algorithm is enabled by setting setConsistentHashingBalancingFactor() to a value other than 0,
which is the default. This value is the maximum number of outstanding queries that a given server can have at a
given time, as a ratio of the total number of outstanding queries for all the active servers in the pool, pondered by
the weight of the server.

The algorithm will try to select a server based on the hash of the qname, as is done when no bounded-load is set,
but will disqualify all servers that have more outstanding queries than intended times the factor, until a suitable
server is found. The higher the factor, the more imbalance between the servers is allowed.

For example, if we have two servers, with respective weights of 1 and 4, we expect the first server to get a fifth of
the queries, and the second one 4/5. If the qname of the queries are not perfectly distributed, some server might
get more queries than expected. Setting setConsistentHashingBalancingFactor() to 1.1 limits the
imbalance between the ratio of outstanding queries actually handled by a server and the expected number, so in
this example the first server would not be allowed to handle more than 1.1/5 of all the outstanding queries at a
given time.

17.3. Loadbalancing and Server Policies 75

dnsdist

roundrobin

The last available policy is roundrobin, which indiscriminately sends each query to the next server
that is up. If all servers are down, the policy will still select one server by default. Setting
setRoundRobinFailOnNoServer() to true will change this behavior.

17.3.2 Lua server policies

If you don’t like the default policies you can create your own, like this for example:

counter=0
function luaroundrobin(servers, dq)

counter=counter+1
return servers[1+(counter % #servers)]

end

setServerPolicyLua("luaroundrobin", luaroundrobin)

Incidentally, this is similar to setting: setServerPolicy(roundrobin) which uses the C++ based
roundrobin policy.

Or:

newServer("192.168.1.2")
newServer({address="8.8.4.4", pool="numbered"})

function splitSetup(servers, dq)
if(string.match(dq.qname:toString(), "%d"))
then
print("numbered pool")
return leastOutstanding.policy(getPoolServers("numbered"), dq)

else
print("standard pool")
return leastOutstanding.policy(servers, dq)

end
end

setServerPolicyLua("splitsetup", splitSetup)

A faster, FFI version is also available since 1.5.0:

local ffi = require("ffi")
local C = ffi.C

local counter = 0
function luaffiroundrobin(servers_list, dq)
counter = counter + 1
return (counter % tonumber(C.dnsdist_ffi_servers_list_get_count(servers_list)))

end
setServerPolicyLuaFFI("luaffiroundrobin", luaffiroundrobin)

Note that this version returns the index (starting at 0) of the server to select, instead of returning the server itself. It
was initially not possible to indicate that all servers were unavailable from these policies, but since 1.9.2 returning
a value equal or greater than the number of servers will be interpreted as such.

For performance reasons, 1.6.0 introduced per-thread Lua FFI policies that are run in a lock-free per-thread Lua
context instead of the global one. This reduces contention between threads at the cost of preventing sharing data
between threads for these policies. Since the policy needs to be recompiled in the context of each thread instead
of the global one, Lua code that returns a function should be passed to the function as a string instead of directly
passing the name of a function:

76 Chapter 17. Guides

dnsdist

setServerPolicyLuaFFIPerThread("luaffiroundrobin", [[
local ffi = require("ffi")
local C = ffi.C

local counter = 0
return function(servers_list, dq)
counter = counter + 1
return (counter % tonumber(C.dnsdist_ffi_servers_list_get_count(servers_list)))

end
]])

Note that this version, like the one above, returns the index (starting at 0) of the server to select. It was initially not
possible to indicate that all servers were unavailable from these policies, but since 1.9.2 returning a value equal or
greater than the number of servers will be interpreted as such.

17.3.3 ServerPolicy Objects

class ServerPolicy
This represents a server policy. The built-in policies are of this type

ServerPolicy.policy(servers, dq)→ Server
Run the policy to receive the server it has selected.

Parameters

• servers – A list of Server objects

• dq (DNSQuestion) – The incoming query

ServerPolicy.ffipolicy
For policies implemented using the Lua FFI interface, the policy function itself.

ServerPolicy.isFFI
Whether a Lua-based policy is implemented using the FFI interface.

ServerPolicy.isLua
Whether this policy is a native (C++) policy or a Lua-based one.

ServerPolicy.isPerThread
Whether a FFI Lua-based policy is executed in a lock-free per-thread context instead of running in the
global Lua context.

ServerPolicy.name
The name of the policy.

ServerPolicy.policy
The policy function itself, except for FFI policies.

Server:toString()
Return a textual representation of the policy.

17.3.4 Functions

newServerPolicy(name, function)→ ServerPolicy
Create a policy object from a Lua function. function must match the prototype for ServerPolicy.
policy().

Parameters

• name (string) – Name of the policy

• function (string) – The function to call for this policy

17.3. Loadbalancing and Server Policies 77

dnsdist

setConsistentHashingBalancingFactor(factor)
Set the maximum imbalance between the number of outstanding queries intended for a given server, based
on its weight, and the actual number, when using the chashed consistent hashing load-balancing policy.
Default is 0, which disables the bounded-load algorithm.

setServerPolicy(policy)
Set server selection policy to policy.

Parameters policy (ServerPolicy) – The policy to use

setServerPolicyLua(name, function)
Set server selection policy to one named name and provided by function.

Parameters

• name (string) – name for this policy

• function (string) – name of the function

setServerPolicyLuaFFI(name, function)
New in version 1.5.0.

Changed in version 1.9.2: Returning a value equal or greater than the number of servers will be interpreted
as all servers being unavailable.

Set server selection policy to one named name and provided by the FFI function function.

Parameters

• name (string) – name for this policy

• function (string) – name of the FFI function

setServerPolicyLuaFFIPerThread(name, code)
New in version 1.6.0.

Changed in version 1.9.2: Returning a value equal or greater than the number of servers will be interpreted
as all servers being unavailable.

Set server selection policy to one named name and the Lua FFI function returned by the Lua code passed
in code. The resulting policy will be executed in a lock-free per-thread context, instead of running in the
global Lua context.

Parameters

• name (string) – name for this policy

• code (string) – Lua FFI code returning the function to execute as a server selection
policy

setServFailWhenNoServer(value)
If set, return a ServFail when no servers are available, instead of the default behaviour of dropping the query.

Parameters value (bool) – whether to return a servfail instead of dropping the query

setPoolServerPolicy(policy, pool)
Set the server selection policy for pool to policy.

Parameters

• policy (ServerPolicy) – The policy to apply

• pool (string) – Name of the pool

setPoolServerPolicyLua(name, function, pool)
Set the server selection policy for pool to one named name and provided by function.

Parameters

• name (string) – name for this policy

• function (string) – name of the function

78 Chapter 17. Guides

dnsdist

• pool (string) – Name of the pool

setRoundRobinFailOnNoServer(value)
New in version 1.4.0.

By default the roundrobin load-balancing policy will still try to select a backend even if all backends are
currently down. Setting this to true will make the policy fail and return that no server is available instead.

Parameters value (bool) – whether to fail when all servers are down

setWeightedBalancingFactor(factor)
Set the maximum imbalance between the number of outstanding queries intended for a given server, based
on its weight, and the actual number, when using the whashed or wrandom load-balancing policy. Default
is 0, which disables the bounded-load algorithm.

showPoolServerPolicy(pool)
Print server selection policy for pool.

Parameters pool (string) – The pool to print the policy for

17.3. Loadbalancing and Server Policies 79

dnsdist

80 Chapter 17. Guides

CHAPTER

EIGHTEEN

ADVANCED TOPICS

These chapters contain information on the advanced features of dnsdist

18.1 Access Control

dnsdist can be used to front traditional recursive nameservers, these usually come with a way to limit the network
ranges that may query it to prevent becoming an open resolver. To be a good internet citizen, dnsdist by default
listens on the loopback address (127.0.0.1:53) and limits queries to these loopback, RFC 1918 and other local
addresses:

• 127.0.0.0/8

• 10.0.0.0/8

• 100.64.0.0/10

• 169.254.0.0/16

• 192.168.0.0/16

• 172.16.0.0/12

• ::1/128

• fc00::/7

• fe80::/10

The ACL applies to queries received over UDP, TCP, DNS over TLS and DNS over HTTPS.

Further more, dnsdist only listens for queries on the local-loopback interface by default.

18.1.1 Listening on different addresses

To listen on other addresses than just the local addresses, use setLocal() and addLocal().

setLocal() resets the list of current listen addresses to the specified address and addLocal() adds
an additional listen address. To listen on 127.0.0.1:5300, 192.0.2.1:53 and UDP-only on
[2001:db8::15::47]:53, configure the following:

setLocal('127.0.0.1:5300')
addLocal('192.0.2.1') -- Port 53 is default is none is specified
addLocal('2001:db8::15::47', false)

Listen addresses cannot be modified at runtime and must be specified in the configuration file.

As dnsdist is IPv4 and IPv6 agnostic, this means that dnsdist internally does not know the difference. So feel free
to listen on the magic 0.0.0.0 or :: addresses, dnsdist does the right thing to set the return address of queries,
but set your ACL properly.

81

https://tools.ietf.org/html/rfc1918.html

dnsdist

18.1.2 Modifying the ACL

ACLs can be modified at runtime from the Working with the dnsdist Console. To inspect the currently active ACL,
run showACL().

To add a new network range to the existing ACL, use addACL():

addACL('192.0.2.0/25')
addACL('2001:db8::1') -- No netmask specified, only allow this address

To remove a previously added network range from the existing ACL, use rmACL():

rmACL('192.0.2.0/25')
rmACL('2001:db8::1') -- No netmask specified, only remove this address

dnsdist also has the setACL() function that accepts a list of netmasks and resets the ACL to that list:

setACL({'192.0.2.0/25', '2001:db8:15::bea/64'})

To set the ACL from a file containing a list of netmasks, use setACLFromFile():

setACLFromFile('/etc/dnsdist/query.acl')

18.2 Passing the source address to the backend

dnsdist, as a load-balancer, receives the UDP datagrams and terminates the TCP connections with the client. It
therefore knows the source IP address and port of that client, as well as the original destination address, port,
and protocol. Very often the backend needs to know that information as well, to pass EDNS Client Subnet to an
authoritative server, to do GeoIP-based processing or even custom filtering.

There are several ways to pass that information using dnsdist: EDNS Client Subnet, X-Proxied-For and the Proxy
Protocol.

18.2.1 Using EDNS Client Subnet

EDNS Client Subnet (ECS) is a standardized EDNS option designed to pass a bit of information about the client
from a resolver to authoritative servers. While it was not designed with our use-case in mind, it can be used by
dnsdist to send the source IP, but only the source IP, to its backend.

In order to provide the downstream server with the address of the real client, or at least the one talking to dns-
dist, the useClientSubnet parameter can be used when creating a new server. This parameter indicates
whether an EDNS Client Subnet option should be added to the request.

The default source prefix-length is 24 for IPv4 and 56 for IPv6, meaning that for a query received from
192.0.2.42, the EDNS Client Subnet value sent to the backend will be 192.0.2.0. This can be changed with
setECSSourcePrefixV4() and setECSSourcePrefixV6().

If the incoming request already contains an EDNS Client Subnet value, it will not be overridden unless
setECSOverride() is set to true.

In addition to the global settings, rules and Lua bindings can alter this behavior per query:

• calling SetDisableECSAction() or setting dq.useECS to false prevents the sending of the ECS
option.

• calling SetECSOverrideAction() or setting dq.ecsOverride will override the global
setECSOverride() value.

• calling SetECSPrefixLengthAction(v4, v6)() or setting dq.ecsPrefixLength will over-
ride the global setECSSourcePrefixV4() and setECSSourcePrefixV6() values.

82 Chapter 18. Advanced Topics

dnsdist

In effect this means that for the EDNS Client Subnet option to be added to the request, useClientSubnet
should be set to true for the backend used (default to false) and ECS should not have been disabled by calling
SetDisableECSAction() or setting dq.useECS to false (default to true).

Note that any trailing data present in the incoming query is removed when an OPT (or XPF) record has to be
inserted.

In addition to the drawback that it can only pass the source IP address, and the fact that it needs to override any
existing ECS option, adding that option requires parsing and editing the query, as well as parsing and editing the
response in most cases.

Payload Required processing
Query, no EDNS add an OPT record
Query, EDNS without ECS edit the OPT record to add an ECS option
Query, ECS edit the OPT record to overwrite the ECS option
Response, no EDNS none
Response, EDNS without ECS remove the OPT record if needed
Response, EDNS with ECS remove or edit the ECS option if needed

18.2.2 X-Proxied-For

Note: This is a deprecated feature that will be removed in the near future.

The experimental XPF record (from draft-bellis-dnsop-xpf) is an alternative to the use of EDNS Client Subnet
which has the advantages of preserving any existing EDNS Client Subnet value sent by the client, and of passing
along the original destination address, as well as the initial source and destination ports.

In order to provide the downstream server with the address of the real client, or at least the one talking to dnsdist,
the addXPF parameter can be used when creating a new server. This parameter indicates whether an XPF
record shall be added to the query. Since that record is experimental, there is currently no option code assigned to
it, and therefore one needs to be specified as an argument to the addXPF parameter.

If the incoming request already contains a XPF record, it will not be overwritten. Instead a new one will be added
to the query and the existing one will be preserved. That might be an issue by allowing clients to spoof their source
address by adding a forged XPF record to their query. That can be prevented by using a rule to drop incoming
queries containing a XPF record (in that example the 65280 option code has been assigned to XPF):

addAction(RecordsTypeCountRule(DNSSection.Additional, 65280, 1, 65535),
→˓DropAction())

18.2.3 Proxy Protocol

The Proxy Protocol has been designed by the HAProxy folks for HTTP over TCP, but is generic enough to be used
in other places, and is a de-facto standard with implementations in nginx and postfix, for example. It works by
pre-pending a small header at the very beginning of a UDP datagram or TCP connection, which holds the initial
source and destination addresses and ports, and can also contain several custom values in a Type-Length-Value
format. More information about the Proxy Protocol can be found at https://www.haproxy.org/download/2.2/doc/
proxy-protocol.txt

In order to use it in dnsdist, the useProxyProtocol parameter can be used when creating a new server.
This parameter indicates whether a Proxy Protocol version 2 (binary) header should be prepended to the query
before forwarding it to the backend, over UDP or TCP. Such a Proxy Protocol header can also be passed from
the client to dnsdist, using setProxyProtocolACL() to specify which clients to accept it from. Note that a
proxy protocol payload will be required from these clients, regular DNS queries will no longer be accepted if they
are not preceded by a proxy protocol payload.

18.2. Passing the source address to the backend 83

https://datatracker.ietf.org/doc/draft-bellis-dnsop-xpf/
https://www.haproxy.org/download/2.2/doc/proxy-protocol.txt
https://www.haproxy.org/download/2.2/doc/proxy-protocol.txt

dnsdist

If setProxyProtocolApplyACLToProxiedClients() is set (default is false), the general ACL will be
applied to the source IP address as seen by dnsdist first, but also to the source IP address provided in the Proxy
Protocol header.

Custom values can be added to the header via DNSQuestion:addProxyProtocolValue(),
DNSQuestion:setProxyProtocolValues(), SetAdditionalProxyProtocolValueAction()
and SetProxyProtocolValuesAction(). Be careful that Proxy Protocol values are sent once at the
beginning of the TCP connection for TCP and DoT queries. That means that values received on an incoming
TCP connection will be inherited by subsequent queries received over the same incoming TCP connection, if
any, but values set to a query will not be inherited by subsequent queries. Please also note that the maximum
size of a Proxy Protocol header dnsdist is willing to accept is 512 bytes by default, although it can be set via
setProxyProtocolMaximumPayloadSize().

dnsdist 1.5.0 only supports outgoing Proxy Protocol. Support for parsing incoming Proxy Protocol headers has
been implemented in 1.6.0, except for DoH where it does not make sense anyway, since HTTP headers already
provide a mechanism for that.

Both the PowerDNS Authoritative Server and the Recursor can parse PROXYv2 headers, if configured to do so
with their proxy-protocol-from setting.

18.2.4 Influence on caching

When dnsdist’s packet cache is in use, it is important to note that the cache lookup is done after adding ECS,
because it prevents serving the same response to clients from different subnets when ECS is passed to an author-
itative server doing GeoIP, or to a backend doing custom filtering. However that means that passing a narrow
ECS source will effectively kill dnsdist’s cache ratio, since a given answer will only be a cache hit for clients in
the same ECS subnet. Therefore, unless a broad ECS source (greater than 24, for example) is used, it’s better to
disable caching.

One exception to that rule is the zero-scope feature, which allows dnsdist to detect that a response sent by the
backend has a 0-scope ECS value, indicating that the answer is not ECS-specific and can be used for all clients.
dnsdist will then store the answer in its packet cache using the initial query, before ECS has been added. For
that feature to work, dnsdist will look up twice into the packet cache when a query arrives, first without and then
with ECS. That way, when most of the responses sent by a backend are not ECS-specific and can be served to all
clients, dnsdist will still be able to have a great cache-hit ratio for non ECS-specific entries.

That feature is enabled by setting disableZeroScope=false on newServer() (default) and
parseECS=true on newPacketCache() (not the default).

Things are different for XPF and the proxy protocol, because dnsdist then does the cache lookup before adding
the payload. It means that caching can still be enabled as long as the response is not source-dependent, but should
be disabled otherwise.

Protocol Standard Require DNS parsing Contains ports Caching
ECS Yes Query and response No Only with broad source
ECS (zero-scope) Yes Query and response No Yes
XPF No Query Yes Depends on the backend
Proxy Protocol No No Yes Depends on the backend

18.3 TeeAction: copy the DNS traffic stream

This action sends off a copy of a UDP query to another server, and keeps statistics on the responses received.
Sample use:

> addAction(AllRule(), TeeAction("192.0.2.54"))
> getAction(0):printStats()
refuseds 0
nxdomains 0

(continues on next page)

84 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

noerrors 0
servfails 0
recv-errors 0
tcp-drops 0
responses 0
other-rcode 0
send-errors 0
queries 0

It is also possible to share a TeeAction() between several rules. Statistics will be combined in that case.

18.4 Lua actions in rules

While we can pass every packet through the blockFilter() functions, it is also possible to configure
dnsdist to only hand off some packets for Lua inspection. If you think Lua is too slow for your query load, or
if you are doing heavy processing in Lua, this may make sense.

To select specific packets for Lua attention, use addAction() with LuaAction(), or
addResponseAction() with LuaResponseAction().

A sample configuration could look like this:

function luarule(dq)
if(dq.qtype==35) -- NAPTR
then
return DNSAction.Pool, "abuse" -- send to abuse pool

else
return DNSAction.None, "" -- no action

end
end

addAction(AllRule(), LuaAction(luarule))

18.5 Runtime-modifiable IP address sets

From within maintenance() or other places, we may find that certain IP addresses must be treated differently
for a certain time.

This may be used to temporarily shunt traffic to another pool for example.

TimedIPSetRule() creates an object to which native IP addresses can be added in ComboAddress form.

TimedIPSetRule()→ TimedIPSetRule
Returns a TimedIPSetRule.

class TimedIPSetRule
Can be used to handle IP addresses differently for a certain time.

:add(address, seconds)
Add an IP address to the set for the next second seconds.

Parameters

• address (ComboAddress) – The address to add

• seconds (int) – Time to keep the address in the Rule

:cleanup()
Purge the set from expired IP addresses

18.4. Lua actions in rules 85

dnsdist

:clear()
Clear the entire set

:slice()
Convert the TimedIPSetRule into a DNSRule that can be passed to addAction()

A working example:

tisrElGoog=TimedIPSetRule()
tisrRest=TimedIPSetRule()
addAction(tisrElGoog:slice(), PoolAction("elgoog"))
addAction(tisrRest:slice(), PoolAction(""))

elgoogPeople=newNMG()
elgoogPeople:addMask("192.168.5.0/28")

function pickPool(dq)
if(elgoogPeople:match(dq.remoteaddr)) -- in real life, this would be

→˓external
then

print("Lua caught query for a googlePerson")
tisrElGoog:add(dq.remoteaddr, 10)
return DNSAction.Pool, "elgoog"

else
print("Lua caught query for restPerson")
tisrRest:add(dq.remoteaddr, 60)
return DNSAction.None, ""

end
end

addAction(AllRule(), LuaAction(pickPool))

18.6 Rules for traffic exceeding QPS limits

Traffic that exceeds a QPS limit, in total or per IP (subnet) can be matched by the MaxQPSIPRule()-rule. For
example:

addAction(MaxQPSIPRule(5, 32, 48), DelayAction(100))

This measures traffic per IPv4 address and per /48 of IPv6, and if UDP traffic for such an address (range) exceeds
5 qps, it gets delayed by 100ms.

As another example:

addAction(MaxQPSIPRule(5), SetNoRecurseAction())

This strips the Recursion Desired (RD) bit from any traffic per IPv4 or IPv6 /64 that exceeds 5 qps. This means
any those traffic bins is allowed to make a recursor do ‘work’ for only 5 qps.

If this is not enough, try:

addAction(MaxQPSIPRule(5), DropAction())
-- or
addAction(MaxQPSIPRule(5), TCAction())

This will respectively drop traffic exceeding that 5 QPS limit per IP or range, or return it with TC=1, forcing
clients to fall back to TCP.

To turn this per IP or range limit into a global limit, use NotRule(MaxQPSRule(5000)) instead of
MaxQPSIPRule().

86 Chapter 18. Advanced Topics

dnsdist

18.7 eBPF Socket Filtering

dnsdist can use eBPF socket filtering on recent Linux kernels (4.1+) built with eBPF support (CONFIG_BPF,
CONFIG_BPF_SYSCALL, ideally CONFIG_BPF_JIT). It requires dnsdist to have the CAP_SYS_ADMIN ca-
pabilities at startup, or the more restrictive CAP_BPF one since Linux 5.8.

Note: To retain the required capability, CAP_SYS_ADMIN or CAP_BPF depending on the Linux kernel version,
it is necessary to call addCapabilitiesToRetain() during startup, as dnsdist drops capabilities after
startup.

Note: eBPF can be used by unprivileged users lacking the CAP_SYS_ADMIN (or CAP_BPF) capability on
some kernels, depending on the value of the kernel.unprivileged_bpf_disabled sysctl. Since 5.15
that kernel build setting BPF_UNPRIV_DEFAULT_OFF is enabled by default, which prevents unprivileged users
from using eBPF.

Note: AppArmor users might need to update their policy to allow dnsdist to keep the CAP_SYS_ADMIN (or
CAP_BPF) capability. Adding a capability bpf, (for CAP_BPF) line to the policy file is usually enough.

Note: In addition to keeping the correct capability, large maps might require an increase of RLIMIT_MEMLOCK,
as mentioned below.

This feature allows dnsdist to ask the kernel to discard incoming packets in kernel-space instead of them being
copied to userspace just to be dropped, thus being a lot of faster. The current implementation supports dropping
UDP and TCP queries based on the source IP and UDP datagrams on exact DNS names. We have not been able
to implement suffix matching yet, due to a limit on the maximum number of EBPF instructions.

The following figure show the CPU usage of dropping around 20k qps of traffic, first in userspace (34 to 36) then
in kernel space with eBPF (37 to 39). The spikes are caused because the drops are triggered by dynamic rules, so
the first spike is the abuse traffic before a rule is automatically inserted, and the second spike is because the rule
expires automatically after 60s before being inserted again.

The BPF filter can be used to block incoming queries manually:

> bpf = newBPFFilter({ipv4MaxItems=1024, ipv6MaxItems=1024, qnamesMaxItems=1024})
> bpf:attachToAllBinds()
> bpf:block(newCA("2001:DB8::42"))
> bpf:blockQName(newDNSName("evildomain.com"), 255)

(continues on next page)

18.7. eBPF Socket Filtering 87

http://www.brendangregg.com/ebpf.html

dnsdist

(continued from previous page)

> bpf:getStats()
[2001:DB8::42]: 0
evildomain.com. 255: 0
> bpf:unblock(newCA("2001:DB8::42"))
> bpf:unblockQName(newDNSName("evildomain.com"), 255)
> bpf:getStats()

The BPFFilter:blockQName() method can be used to block queries based on the exact qname supplied, in
a case-insensitive way, and an optional qtype. Using the 255 (ANY) qtype will block all queries for the qname,
regardless of the qtype. Contrary to source address filtering, qname filtering only works over UDP. TCP qname
filtering can be done the usual way:

addAction(AndRule({TCPRule(true), makeRule("evildomain.com")}), DropAction())

The BPFFilter:attachToAllBinds() method attaches the filter to every existing bind at runtime. It
cannot use at configuration time. The setDefaultBPFFilter() should be used at configuration time.

The BPFFilter:attachToAllBinds() automatically attached to every bind:

bpf = newBPFFilter({ipv4MaxItems=1024, ipv6MaxItems=1024, qnamesMaxItems=1024})
setDefaultBPFFilter(bpf)

Finally, it’s also possible to attach it to specific binds at runtime:

> bpf = newBPFFilter({ipv4MaxItems=1024, ipv6MaxItems=1024, qnamesMaxItems=1024})
> showBinds()
Address Protocol Queries
0 [::]:53 UDP 0
1 [::]:53 TCP 0
> bd = getBind(0)
> bd:attachFilter(bpf)

dnsdist also supports adding dynamic, expiring blocks to a BPF filter:

bpf = newBPFFilter({ipv4MaxItems=1024, ipv6MaxItems=1024, qnamesMaxItems=1024})
setDefaultBPFFilter(bpf)
local dbr = dynBlockRulesGroup()
dbr:setQueryRate(20, 10, "Exceeded query rate", 60)

function maintenance()
dbr:apply()

end

This will dynamically block all hosts that exceeded 20 queries/s as measured over the past 10 seconds, and the
dynamic block will last for 60 seconds.

Since 1.6.0, the default BPF filter set via setDefaultBPFFilter() will automatically get used when a
“drop” dynamic block is inserted via a DynBlockRulesGroup, which provides a better way to combine dynamic
blocks with eBPF filtering. Before that, it was possible to use the addBPFFilterDynBlocks() method
instead:

-- this is a legacy method, please see above for DNSdist >= 1.6.0
bpf = newBPFFilter({ipv4MaxItems=1024, ipv6MaxItems=1024, qnamesMaxItems=1024})
setDefaultBPFFilter(bpf)
dbpf = newDynBPFFilter(bpf)
function maintenance()

addBPFFilterDynBlocks(exceedQRate(20, 10), dbpf, 60)
dbpf:purgeExpired()

end

The dynamic eBPF blocks and the number of queries they blocked can be seen in the web interface and retrieved
from the API. Note however that eBPF dynamic objects need to be registered before they appear in the web

88 Chapter 18. Advanced Topics

dnsdist

interface or the API, using the registerDynBPFFilter() function:

registerDynBPFFilter(dbpf)

They can be unregistered at a later point using the unregisterDynBPFFilter() function. Since 1.8.2, the
metrics for the BPF filter registered via setDefaultBPFFilter() are exported as well.

18.7.1 Requirements

In addition to the capabilities explained above, that feature might require an increase of the memory limit associ-
ated to a socket, via the sysctl setting net.core.optmem_max. When attaching an eBPF program to a socket,
the size of the program is checked against this limit, and the default value might not be enough.

Large map sizes might also require an increase of RLIMIT_MEMLOCK, which can be done by adding
LimitMEMLOCK=limit in the systemd unit file, where limit is specified using byte as unit. It can also be
done manually for testing purposes, in a non-permanent way, by using ulimit -l.

To change the default hard limit on RLIMIT_MEMLOCK add the following line to /etc/security/limits.conf for the user, specifying a limit in units of 1k, for example:
> $USER hard memlock 1024

18.7.2 External program, maps and XDP filtering

Since 1.7.0 dnsdist has the ability to expose its eBPF map to external programs. That feature makes it possible
to populate the client IP addresses and qnames maps from dnsdist, usually using the dynamic block mechanism,
and to act on the content of these maps from an external program, including a XDP one. For example, to instruct
dnsdist to create under the /sys/fs/bpf mount point of type bpf three maps of maximum 1024 entries each,
respectively pinned to /sys/fs/bpf/dnsdist/addr-v4, /sys/fs/bpf/dnsdist/addr-v6, /sys/
fs/bpf/dnsdist/qnames for IPv4 addresses, IPv6 ones, and qnames:

bpf = newBPFFilter({maxItems=1024, pinnedPath='/sys/fs/bpf/dnsdist/addr-v4'},
→˓{maxItems=1024, pinnedPath='/sys/fs/bpf/dnsdist/addr-v6'}, {maxItems=1024,
→˓pinnedPath='/sys/fs/bpf/dnsdist/qnames'}, true)

Note: By default only root can write into a bpf mount point, but it is possible to create a dnsdist/ sub-directory
with mkdir and to make it owned by the dnsdist user with chown.

The last parameter to newBPFFilter() is set to true to indicate to dnsdist not to load its internal eBPF socket
filter program, which is not needed since packets will be intercepted by an external program and would at best
duplicate the work done by the other program. It also tell dnsdist to use a slightly different format for the eBPF
maps:

• IPv4 and IPv6 maps still use the address as key, but the value contains an action field in addition to the
‘matched’ counter, to allow for more actions than just dropping the packet

• the qname map now uses the qname and qtype as key, instead of using only the qname, and the value
contains the action and counter fields described above instead of having a counter and the qtype

The first, legacy format is still used because of the limitations of eBPF socket filter programs on older kernels, and
the number of instructions in particular, that prevented us from using the qname and qtype as key. We will likely
switch to the newer format by default once Linux distributions stop shipping these older kernels. XDP programs
require newer kernel versions anyway and have thus fewer limitations.

XDP programs are more powerful than eBPF socket filtering ones as they are not limited to accepting or denying a
packet, but can immediately craft and send an answer. They are also executed a bit earlier in the kernel networking
path so can provide better performance.

A sample program using the maps populated by dnsdist in an external XDP program can be found in the contrib/
directory of our git repository. That program supports answering with a TC=1 response instead of simply dropping
the packet.

18.7. eBPF Socket Filtering 89

https://github.com/PowerDNS/pdns/tree/master/contrib
https://github.com/PowerDNS/pdns/tree/master/contrib

dnsdist

18.8 Performance Tuning

First, a few words about dnsdist architecture:

• Each local bind has its own thread listening for incoming UDP queries

• and its own thread listening for incoming TCP connections, dispatching them right away to a pool of TCP
worker threads

• Each backend has its own thread listening for UDP responses, including the ones triggered by DoH queries,
if any

• A maintenance thread calls the maintenance() Lua function every second if any, and is responsible for
cleaning the cache

• A health check thread checks the backends availability

• A control thread handles console connections, plus one thread per connection

• A carbon thread exports statistics to carbon servers if needed

• One or more webserver threads handle queries to the internal webserver, plus one thread per HTTP connec-
tion

• A SNMP thread handles SNMP operations, when enabled.

18.8.1 UDP and incoming DNS over HTTPS

dnsdist design choices mean that the processing of UDP and DNS over HTTPS queries is done by only one
thread per local bind (per addLocal(), addDNSCryptLocal() and addDOHLocal() directive).

This is great to keep lock contention to a low level, but might not be optimal for setups using a lot of processing
power, caused for example by a large number of complicated rules. To be able to use more CPU cores for UDP
queries processing, it is possible to use the reusePort parameter of the addLocal() and setLocal()
directives to be able to add several identical local binds to dnsdist:

addLocal("192.0.2.1:53", {reusePort=true})
addLocal("192.0.2.1:53", {reusePort=true})
addLocal("192.0.2.1:53", {reusePort=true})
addLocal("192.0.2.1:53", {reusePort=true})

dnsdist will then add four identical local binds as if they were different IPs or ports, start four threads to handle
incoming queries and let the kernel load balance those randomly to the threads, thus using four CPU cores for
rules processing. Note that this require SO_REUSEPORT support in the underlying operating system (added for
example in Linux 3.9). Please also be aware that doing so will increase lock contention and might not therefore
scale linearly, as discussed below.

90 Chapter 18. Advanced Topics

dnsdist

Another possibility is to use the reuseport option to run several dnsdist processes in parallel on the same host, thus
avoiding the lock contention issue at the cost of having to deal with the fact that the different processes will not
share informations, like statistics or DDoS offenders.

The UDP threads handling the responses from the backends do not use a lot of CPU, but if needed it is also possible
to add the same backend several times to the dnsdist configuration to distribute the load over several responder
threads:

newServer({address="192.0.2.127:53", name="Backend1"})
newServer({address="192.0.2.127:53", name="Backend2"})
newServer({address="192.0.2.127:53", name="Backend3"})
newServer({address="192.0.2.127:53", name="Backend4"})

When dispatching UDP queries to backend servers, dnsdist keeps track of at most n outstanding queries for each
backend. This number n can be tuned by the setMaxUDPOutstanding() directive, defaulting to 65535 which
is the maximum value.

Changed in version 1.4.0: The default was 10240 before 1.4.0

Large installations running dnsdist before 1.4.0 are advised to increase the default value at the cost of a slightly
increased memory usage.

Looking at udp-in-errors in dumpStats() will reveal whether the system is dropping UDP datagrams
because dnsdist does not pick them up fast enough. In that case it might be good to add more addLocal()
directives. In the same way, if the number of Drops in showServers() increase fast enough, it might mean
that the backend is overloaded but also that the UDP received thread is. In that case adding more newServer()

Using a single connected UDP socket to contact a backend, and thus a single (source address, source port, desti-
nation address, destination port) tuple, might not play well with some load-balancing mechanisms present in front
of the backend. Linux’s reuseport, for example, does not balance the incoming datagrams to several threads
in that case. That can be worked around by using the sockets option of the newServer() directive to open
several sockets instead of one. You may want to set that number to a value somewhat higher than the number of
worker threads configured in the backend. dnsdist will then select a socket using round-robin to forward a query
to the backend, and use event multiplexing on the receiving side.

Note that, since 1.7, dnsdist supports marking a backend as “TCP only”, as well as enabling DNS over TLS
communication between dnsdist and that backend. That leads to a different model where UDP queries are instead
passed to a TCP worker:

For DNS over HTTPS, every addDOHLocal()/addDOH3Local() directive adds a new thread dealing with
incoming connections, so it might be useful to add more than one directive, as indicated above.

When dealing with a large traffic load, it might happen that the internal pipe used to pass queries between the
threads handling the incoming connections and the one getting a response from the backend become full too
quickly, degrading performance and causing timeouts. This can be prevented by increasing the size of the internal
pipe buffer, via the internalPipeBufferSize option of addDOHLocal(). Setting a value of 1048576 is known to
yield good results on Linux.

18.8. Performance Tuning 91

dnsdist

18.8.2 AF_XDP / XSK

On recent versions of Linux (>= 4.18), DNSDist supports receiving UDP datagrams directly from the kernel,
bypassing the usual network stack, via AF_XDP/XSK. This yields much better performance but comes with some
limitations. Please see AF_XDP / XSK for more information.

18.8.3 UDP buffer sizes

The operating system usually maintains buffers of incoming and outgoing datagrams for UDP sockets, to deal with
short spikes where packets are received or emitted faster than the network layer can process them. On medium
to large setups, it is usually useful to increase these buffers to deal with large spikes. This can be done via the
setUDPSocketBufferSizes().

18.8.4 Outgoing DoH

Starting with 1.7.0, dnsdist supports communicating with the backend using DNS over HTTPS. The incoming
queries, after the processing of rules if any, are passed to one of the DoH workers over a pipe. The DoH worker
handles the communication with the backend, retrieves the response, and either responds directly to the client
(queries coming over UDP) or pass it back over a pipe to the initial thread (queries coming over TCP, DoT or DoH).
The number of outgoing DoH worker threads can be configured using setOutgoingDoHWorkerThreads().

18.8.5 TCP and DNS over TLS

Before 1.4.0, a TCP thread could only handle a single incoming connection at a time. Starting with 1.4.0 the
handling of TCP connections is now event-based, so a single TCP worker can handle a large number of TCP
incoming connections simultaneously. Note that before 1.6.0 the TCP worker threads were created at runtime,
adding a new thread when the existing ones seemed to struggle with the load, until the maximum number of
threads had been reached. Starting with 1.6.0 the configured number of worker threads are immediately created at
startup.

The maximum number of threads in the TCP / DNS over TLS pool is controlled by the
setMaxTCPClientThreads() directive, and defaults to 10. This number can be increased to handle
a large number of simultaneous TCP / DNS over TLS connections.

If all the TCP threads are busy, new TCP connections are queued while they wait to be picked up. The maximum
number of queued connections can be configured with setMaxTCPQueuedConnections() and defaults to

92 Chapter 18. Advanced Topics

dnsdist

18.8. Performance Tuning 93

dnsdist

1000 (10000 on Linux since 1.6.0). Note that the size of the internal pipe used to distribute queries might need to
be increased as well, using setTCPInternalPipeBufferSize(). Any value larger than 0 will cause new
connections to be dropped if there are already too many queued.

By default, every TCP worker thread has its own queue, and the incoming TCP connections are dispatched to TCP
workers on a round-robin basis. This might cause issues if some connections are taking a very long time, since
incoming ones will be waiting until the TCP worker they have been assigned to has finished handling its current
query, while other TCP workers might be available.

The experimental setTCPUseSinglePipe() directive can be used so that all the incoming TCP connections
are put into a single queue and handled by the first TCP worker available. This used to be useful before 1.4.0
because a single connection could block a TCP worker, but the “one pipe per TCP worker” is preferable now that
workers can handle multiple connections to prevent waking up all idle workers when a new connection arrives.
This option will be removed in 1.7.0.

One of the first starting point when investigating TCP or DNS over TLS issues is to look at the
showTCPStats() command. It provides a lot of metrics about the current and passed connections, and why
they were closed.

If the number of queued connections (“Queued” in showTCPStats()) reaches the maximum number of queued
connections (“Max Queued” in showTCPStats()) then there is clearly a problem with TCP workers not picking
up new connections quickly enough. It might be a good idea to increase the number of TCP workers.

A different possibility is that there is not enough threads accepting new connections and distributing them to
worker threads. Looking at whether the listenOverflows metric in dumpStats() increase over time will
tell if we are losing TCP connections because the queue is full. In that case, since a single addLocal() or
addTLSLocal() directive results in only one acceptor thread, it might useful to add more of these.

For incoming and outgoing DNS over TLS support, the choice of the TLS provider (OpenSSL and GnuTLS are
both supported) might yield very different results depending on the exact architecture.

Incoming DNS over TLS (since 1.8.0) and incoming DNS over HTTPS (since 1.9.0) might also benefit from exper-
imental support for TLS acceleration engines, like Intel QAT. See loadTLSEngine(), and the tlsAsyncMode
parameter of addTLSLocal() and addDOHLocal() for more information.

Incoming and outgoing DNS over TLS, outgoing DNS over HTTPS, as well as incoming DNS over HTTPS with
the nghttp2 library (since 1.9.0), might benefit from experimental support kernel-accelerated TLS on Linux,
when supported by the kernel and OpenSSL. See the ktls options on addTLSLocal(), addDOHLocal() and
newServer() for more information. Kernel support for kTLS might be verified by looking at the counters in
/proc/net/tls_stat. Note that:

• supported ciphers depend on the exact kernel version used. TLS_AES_128_GCM_SHA256 might be a
good option for testing purpose since it was supported pretty early

• as of OpenSSL 3.0.7, kTLS can only be used for sending TLS 1.3 packets, not receiving them. Both sending
and receiving packets should be working for TLS 1.2.

18.8.6 TLS performance

For DNS over HTTPS and DNS over TLS, in addition to the advice above we suggest reading the TLS Sessions
Management page to learn how to improve TLS session resumption ratio, which has a huge impact on CPU usage
and latency.

18.8.7 DNS over QUIC

For DNS over QUIC, every addDOQLocal() directive adds a new thread dealing with incoming datagrams, so
it might be useful to add more than one directive.

94 Chapter 18. Advanced Topics

dnsdist

18.8.8 Rules and Lua

Most of the query processing is done in C++ for maximum performance, but some operations are executed in Lua
for maximum flexibility:

• Rules added by LuaAction(), LuaResponseAction(), LuaFFIAction() or
LuaFFIResponseAction()

• Server selection policies defined via setServerPolicyLua(), setServerPolicyLuaFFI(),
setServerPolicyLuaFFIPerThread() or newServerPolicy()

While Lua is fast, its use should be restricted to the strict necessary in order to achieve maximum performance,
it might be worth considering using LuaJIT instead of Lua. When Lua inspection is needed, the best course of
action is to restrict the queries sent to Lua inspection by using addLuaAction() with a selector.

Type Performance Locking
C++ rule fast none
Lua rue slow global Lua lock
Lua FFI rule fast global Lua lock
Lua per-thread FFI rule fast none
C++ LB policy fast none
Lua LB policy slow global Lua lock
Lua FFI LB policy fast global Lua lock
Lua per-thread FFI LB policy fast none

18.8.9 Lock contention and sharding

Adding more threads makes it possible to use more CPU cores to deal with the load, but at the cost of possibly in-
creasing lock contention between threads. This is especially true for Lua-intensive setups, because Lua processing
in dnsdist is serialized by a unique lock for all threads, as seen above.

For other components, like the packet cache and the in-memory ring buffers, it is possible to reduce the amount of
contention by using sharding. Sharding divides the memory into several pieces, every one of these having its own
separate lock, reducing the amount of times two threads or more will need to access the same data.

Sharding was disabled by default before 1.6.0 and could be enabled via the numberOfShards option to
newPacketCache() and setRingBuffersSize(). It might still make sense to increment the number
of shards when dealing with a lot of threads.

18.8. Performance Tuning 95

dnsdist

18.8.10 Memory usage

The main sources of memory usage in DNSDist are:

• packet caches, when enabled

• the number of outstanding UDP queries per backend, configured with setMaxUDPOutstanding() (see
above)

• the number of entries in the ring-buffers, configured with setRingBuffersSize()

• the number of short-lived dynamic block entries

• the number of user-defined rules and actions

• the number of TCP, DoT and DoH connections

Memory usage per connection for connected protocols:

Protocol Memory usage per connection
TCP 6 kB
DoT (GnuTLS) 16 kB
DoT (OpenSSL) 52 kB
DoT (OpenSSL w/ releaseBuffers) 19 kB
DoH (http) 2 kB
DoH 48 kB
DoH (w/ releaseBuffers) 15 kB

18.8.11 Firewall connection tracking

When dealing with a lot of queries per second, dnsdist puts a severe stress on any stateful (connection tracking)
firewall, so much so that the firewall may fail.

Specifically, many Linux distributions run with a connection tracking firewall configured. For high load operation
(thousands of queries/second), it is advised to either turn off iptables and nftables completely, or use the
NOTRACK feature to make sure client DNS traffic bypasses the connection tracking.

18.8.12 Network interface receive queues

Most high-speed (>= 10 Gbps) network interfaces support multiple queues to offer better performance, using
hashing to dispatch incoming packets into a specific queue.

Unfortunately the default hashing algorithm is very often considering the source and destination addresses only,
which might be an issue when dnsdist is placed behind a frontend, for example.

On Linux it is possible to inspect the current network flow hashing policy via ethtool:

$ sudo ethtool -n enp1s0 rx-flow-hash udp4
UDP over IPV4 flows use these fields for computing Hash flow key:
IP SA
IP DA

In this example only the source (IP SA) and destination (IP DA) addresses are indeed used, meaning that all
packets coming from the same source address to the same destination address will end up in the same receive
queue, which is not optimal. To take the source and destination ports into account as well:

$ sudo ethtool -N enp1s0 rx-flow-hash udp4 sdfn
$

96 Chapter 18. Advanced Topics

dnsdist

18.9 SNMP support

dnsdist supports exporting statistics and sending traps over SNMP when compiled with Net SNMP support,
acting as an AgentX subagent. SNMP support is enabled via the snmpAgent() directive.

By default, the only traps sent when Traps are enabled, are backend status change notifications. But custom traps
can also be sent:

• from Lua, with sendCustomTrap() and DNSQuestion:sendTrap()

• For selected queries and responses, using SNMPTrapAction() and SNMPTrapResponseAction()

Net SNMP snmpd doesn’t accept subagent connections by default, so to use the SNMP features of dnsdist
the following line should be added to the snmpd.conf configuration file:

master agentx

In addition to that, the permissions on the resulting socket might need to be adjusted so that the dnsdist user
can write to it. This can be done with the following lines in snmpd.conf (assuming dnsdist is running as
dnsdist:dnsdist):

agentxperms 0700 0700 dnsdist dnsdist

In order to allow the retrieval of statistics via SNMP, snmpd’s access control has to configured. A very simple
SNMPv2c setup only needs the configuration of a read-only community in snmpd.conf:

rocommunity dnsdist42

snmpd also supports more secure SNMPv3 setup, using for example the createUser and rouser directives:

createUser myuser SHA "my auth key" AES "my enc key"
rouser myuser

snmpd can be instructed to send SNMPv2 traps to a remote SNMP trap receiver by adding the following directive
to the snmpd.conf configuration file:

trap2sink 192.0.2.1

The description of dnsdist’s SNMP MIB is as follows:

-- -*- snmpv2 -*-
-- --
-- MIB file for dnsdist
-- --

DNSDIST-MIB DEFINITIONS ::= BEGIN

IMPORTS
OBJECT-TYPE, MODULE-IDENTITY, enterprises,
Counter64, Unsigned32, NOTIFICATION-TYPE

FROM SNMPv2-SMI
CounterBasedGauge64

FROM HCNUM-TC
Float64TC

FROM FLOAT-TC-MIB
OBJECT-GROUP, MODULE-COMPLIANCE, NOTIFICATION-GROUP

FROM SNMPv2-CONF
InetAddressType

FROM INET-ADDRESS-MIB
TEXTUAL-CONVENTION, DisplayString

FROM SNMPv2-TC;

(continues on next page)

18.9. SNMP support 97

dnsdist

(continued from previous page)

dnsdist MODULE-IDENTITY
LAST-UPDATED "201611080000Z"
ORGANIZATION "PowerDNS BV"
CONTACT-INFO "support@powerdns.com"
DESCRIPTION

"This MIB module describes information gathered through dnsdist."

REVISION "201611080000Z"
DESCRIPTION "Initial revision."

::= { powerdns 3 }

powerdns OBJECT IDENTIFIER ::= { enterprises 43315 }

stats OBJECT IDENTIFIER ::= { dnsdist 1 }

queries OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries received"
::= { stats 1 }

responses OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of responses received"
::= { stats 2 }

servfailResponses OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of servfail responses received"
::= { stats 3 }

aclDrops OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries dropped because of the ACL"
::= { stats 4 }

-- stats 5 was a BlockFilter Counter, removed in 1.2.0

ruleDrop OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries dropped because of a rule"
::= { stats 6 }

ruleNXDomain OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only

(continues on next page)

98 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

STATUS current
DESCRIPTION

"Number of NXDomain responses returned because of a rule"
::= { stats 7 }

ruleRefused OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of Refused responses returned because of a rule"
::= { stats 8 }

selfAnswered OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of self-answered responses"
::= { stats 9 }

downstreamTimeouts OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of downstream timeouts"
::= { stats 10 }

downstreamSendErrors OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of downstream send errors"
::= { stats 11 }

truncFailures OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of errors while truncating a response"
::= { stats 12 }

noPolicy OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries dropped because no server was available"
::= { stats 13 }

latency01 OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in less than 1 ms"
::= { stats 14 }

(continues on next page)

18.9. SNMP support 99

dnsdist

(continued from previous page)

latency110 OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in 1-10 ms"
::= { stats 15 }

latency1050 OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in 10-50 ms"
::= { stats 16 }

latency50100 OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in 50-100 ms"
::= { stats 17 }

latency1001000 OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in 100-1000 ms"
::= { stats 18 }

latencySlow OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of UDP queries answered in more than 1s"
::= { stats 19 }

latencyAVG100 OBJECT-TYPE
SYNTAX Float64TC
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Average latency over the last 100 queries"
::= { stats 20 }

latencyAVG1000 OBJECT-TYPE
SYNTAX Float64TC
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Average latency over the last 1000 queries"
::= { stats 21 }

latencyAVG10000 OBJECT-TYPE
SYNTAX Float64TC
MAX-ACCESS read-only
STATUS current
DESCRIPTION

(continues on next page)

100 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

"Average latency over the last 10000 queries"
::= { stats 22 }

latencyAVG1000000 OBJECT-TYPE
SYNTAX Float64TC
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Average latency over the last 1000000 queries"
::= { stats 23 }

uptime OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Uptime of the dnsdist process, in seconds"
::= { stats 24 }

realMemoryUsage OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Memory usage"
::= { stats 25 }

nonCompliantQueries OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries dropped as non-compliant"
::= { stats 26 }

nonCompliantResponses OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of responses dropped as non-compliant"
::= { stats 27 }

rdQueries OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries with the RD flag set"
::= { stats 28 }

emptyQueries OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of empty queries received"
::= { stats 29 }

cacheHits OBJECT-TYPE
SYNTAX Counter64

(continues on next page)

18.9. SNMP support 101

dnsdist

(continued from previous page)

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of cache hits"
::= { stats 30 }

cacheMisses OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of cache misses"
::= { stats 31 }

cpuUserMSec OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"CPU Usage (user)"
::= { stats 32 }

cpuSysMSec OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"CPU Usage (sys)"
::= { stats 33 }

fdUsage OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of file descriptors"
::= { stats 34 }

dynBlocked OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries dropped because of a dynamic block"
::= { stats 35 }

dynBlockNMGSize OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Dynamic blocks (NMG) size"
::= { stats 36 }

ruleServFail OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of ServFail responses returned because of a rule"
::= { stats 37 }

(continues on next page)

102 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

securityStatus OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Security status of this software. 0=unknown, 1=OK, 2=upgrade recommended,
→˓3=upgrade mandatory"

::= { stats 38 }

specialMemoryUsage OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Memory usage (more precise but expensive to retrieve)"
::= { stats 39 }

ruleTruncated OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of Truncated responses returned because of a rule"
::= { stats 40 }

backendStatTable OBJECT-TYPE
SYNTAX SEQUENCE OF BackendStatEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Statistics for backends"
::= { dnsdist 2 }

backendStatEntry OBJECT-TYPE
SYNTAX BackendStatEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "Statistics for one backend"
INDEX { backendId }
::= { backendStatTable 1 }

BackendStatEntry ::= SEQUENCE {
backendId Unsigned32,
backendName DisplayString,
backendLatency CounterBasedGauge64,
backendWeight CounterBasedGauge64,
backendOutstanding CounterBasedGauge64,
backendQPSLimit CounterBasedGauge64,
backendReused Counter64,
backendState DisplayString,
backendAddress OCTET STRING,
backendPools DisplayString,
backendQPS CounterBasedGauge64,
backendQueries Counter64,
backendOrder CounterBasedGauge64

}

backendId OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current

(continues on next page)

18.9. SNMP support 103

dnsdist

(continued from previous page)

DESCRIPTION
"Backend ID"

::= { backendStatEntry 1 }

backendName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend name"
::= { backendStatEntry 2 }

backendLatency OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend latency"
::= { backendStatEntry 3 }

backendWeight OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend weight"
::= { backendStatEntry 4 }

backendOutstanding OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend outstanding queries"
::= { backendStatEntry 5 }

backendQPSLimit OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend QPS limit"
::= { backendStatEntry 6 }

backendReused OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend reused slots"
::= { backendStatEntry 7 }

backendState OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend state"
::= { backendStatEntry 8 }

backendAddress OBJECT-TYPE

(continues on next page)

104 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

SYNTAX OCTET STRING (SIZE (2..24))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend address"
::= { backendStatEntry 9 }

backendPools OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"List of pools this backend belongs to"
::= { backendStatEntry 10 }

backendQPS OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend QPS"
::= { backendStatEntry 11 }

backendQueries OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of queries sent to this backend"
::= { backendStatEntry 12 }

backendOrder OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Backend order"
::= { backendStatEntry 13 }

--- Textual Conventions

SocketProtocolType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A value that represents a type of socket protocol."
SYNTAX INTEGER {

unknown(0),
udp(1),
tcp(2)

}

DNSQueryType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"A value that represents a type of DNS query (question or response)."
SYNTAX INTEGER {

unknown(0),
question(1),
response(2)

(continues on next page)

18.9. SNMP support 105

dnsdist

(continued from previous page)

}

--- Traps / Notifications

trap OBJECT IDENTIFIER ::= { dnsdist 10 }
traps OBJECT IDENTIFIER ::= { trap 0 } --- reverse-mappable
trapObjects OBJECT IDENTIFIER ::= { dnsdist 11 }

socketFamily OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Socket family type"
::= { trapObjects 1 }

socketProtocol OBJECT-TYPE
SYNTAX SocketProtocolType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Socket protocol type"
::= { trapObjects 2 }

fromAddress OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2..24))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Requestor address"
::= { trapObjects 3 }

toAddress OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (2..24))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Responder address"
::= { trapObjects 4 }

queryType OBJECT-TYPE
SYNTAX DNSQueryType
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Query / Response"
::= { trapObjects 5 }

querySize OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Size in bytes"
::= { trapObjects 6 }

queryID OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only

(continues on next page)

106 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

STATUS current
DESCRIPTION

"DNS query ID"
::= { trapObjects 7 }

qName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..255))
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"DNS qname"
::= { trapObjects 8 }

qClass OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"DNS query class"
::= { trapObjects 9 }

qType OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"DNS query type"
::= { trapObjects 10 }

trapReason OBJECT-TYPE
SYNTAX OCTET STRING
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Reason for this trap"
::= { trapObjects 11 }

--- { trapObjects 5000 } up to and including { trapObjects 5999 } are reserved for
→˓local, product-specific extensions to the dnsdist MIB

backendStatusChangeTrap NOTIFICATION-TYPE
OBJECTS {

backendName,
backendAddress,
backendState

}
STATUS current
DESCRIPTION "Backend status changed"
::= { traps 1 }

actionTrap NOTIFICATION-TYPE
OBJECTS {

socketFamily,
socketProtocol,
fromAddress,
toAddress,
queryType,
querySize,
queryID,
qName,
qClass,

(continues on next page)

18.9. SNMP support 107

dnsdist

(continued from previous page)

qType,
trapReason

}
STATUS current
DESCRIPTION "Trap sent by SNMPTrapAction"
::= { traps 2 }

customTrap NOTIFICATION-TYPE
OBJECTS {

trapReason
}
STATUS current
DESCRIPTION "Trap sent by sendCustomTrap"
::= { traps 3 }

--- { traps 5000 } up to and including { traps 5999 } are reserved for local,
→˓product-specific extensions to the dnsdist MIB

--- Conformance

dnsdistConformance OBJECT IDENTIFIER ::= { dnsdist 100 }

dnsdistCompliances MODULE-COMPLIANCE
STATUS current
DESCRIPTION "dnsdist compliance statement"
MODULE
MANDATORY-GROUPS {

dnsdistGroup,
dnsdistTrapsGroup

}
::= { dnsdistConformance 1 }

dnsdistGroup OBJECT-GROUP
OBJECTS {

queries,
responses,
servfailResponses,
aclDrops,
ruleDrop,
ruleNXDomain,
ruleRefused,
ruleServFail,
ruleTruncated,
selfAnswered,
downstreamTimeouts,
downstreamSendErrors,
truncFailures,
noPolicy,
latency01,
latency110,
latency1050,
latency50100,
latency1001000,
latencySlow,
latencyAVG100,
latencyAVG1000,
latencyAVG10000,
latencyAVG1000000,
uptime,

(continues on next page)

108 Chapter 18. Advanced Topics

dnsdist

(continued from previous page)

realMemoryUsage,
specialMemoryUsage,
nonCompliantQueries,
nonCompliantResponses,
rdQueries,
emptyQueries,
cacheHits,
cacheMisses,
cpuUserMSec,
cpuSysMSec,
fdUsage,
dynBlocked,
dynBlockNMGSize,
securityStatus,
backendName,
backendLatency,
backendWeight,
backendOutstanding,
backendQPSLimit,
backendReused,
backendState,
backendAddress,
backendPools,
backendQPS,
backendQueries,
backendOrder,
socketFamily,
socketProtocol,
fromAddress,
toAddress,
queryType,
querySize,
queryID,
qName,
qClass,
qType,
trapReason

}
STATUS current
DESCRIPTION "Objects conformance group for dnsdist"
::= { dnsdistConformance 2 }

dnsdistTrapsGroup NOTIFICATION-GROUP
NOTIFICATIONS {

actionTrap,
customTrap,
backendStatusChangeTrap

}
STATUS current
DESCRIPTION "Traps conformance group for dnsdist"
::= { dnsdistConformance 3 }

END

18.9. SNMP support 109

dnsdist

18.10 AXFR, IXFR and NOTIFY

18.10.1 In front of primaries

When dnsdist is deployed in front of a primary authoritative server, it might receive AXFR or IXFR queries
destined to this primary. There are two issues that can arise in this kind of setup:

• If the primary is part of a pool of servers, the first SOA query can be directed by dnsdist to a different
server than the following AXFR/IXFR one, which might fail if the servers are not perfectly synchronised.

• If the primary only allows AXFR/IXFR based on the source address of the requestor, it might be confused
by the fact that the source address will be the one from the dnsdist server.

The first issue can be solved by routing SOA, AXFR and IXFR requests explicitly to the primary:

newServer({address="192.168.1.2", name="primary", pool={"primary", "otherpool"}})
addAction(OrRule({QTypeRule(DNSQType.SOA), QTypeRule(DNSQType.AXFR),
→˓QTypeRule(DNSQType.IXFR)}), PoolAction("primary"))

The second one might require allowing AXFR/IXFR from the dnsdist source address and moving the source
address check to dnsdist’s side:

addAction(AndRule({OrRule({QTypeRule(DNSQType.AXFR), QTypeRule(DNSQType.IXFR)}),
→˓NotRule(makeRule("192.168.1.0/24"))}), RCodeAction(DNSRCode.REFUSED))

Changed in version 1.4.0: Before 1.4.0, the QTypes were in the dnsdist namespace. Use dnsdist.AXFR and
dnsdist.IXFR in these versions. Before 1.4.0, the RCodes were in the dnsdist namespace. Use dnsdist.
REFUSED in these versions.

A different way would be to configure dnsdist to pass the source IP of the client to the backend. The different
options to do that are described in Passing the source address to the backend.

Warning: Be wary of dnsdist caching the responses to AXFR and IXFR queries and sending these to the
wrong clients. This is mitigated by default when the source IP of the client is passed using EDNS Client
Subnet, but not when the proxy protocol is used, so disabling caching for these kinds of queries is advised:

-- this rule will not stop the processing, but disable caching for AXFR and IXFR
→˓responses
addAction(OrRule({QTypeRule(DNSQType.AXFR), QTypeRule(DNSQType.IXFR)}),
→˓SetSkipCacheAction())
-- this rule will route SOA, AXFR and IXFR queries to a specific pool of servers
addAction(OrRule({QTypeRule(DNSQType.SOA), QTypeRule(DNSQType.AXFR),
→˓QTypeRule(DNSQType.IXFR)}), PoolAction("primary"))

Changed in version 1.8.0: Since 1.8.0, dnsdist will no longer cache responses to AXFR and IXFR queries.

18.10.2 In front of secondaries

When dnsdist is deployed in front of secondaries, however, an issue might arise with NOTIFY queries, because
the secondary will receive a notification coming from the dnsdist address, and not the primary’s one. One
way to fix this issue is to allow NOTIFY from the dnsdist address on the secondary side (for example with
PowerDNS’s trusted-notification-proxy) and move the address check to dnsdist’s side:

addAction(AndRule({OpcodeRule(DNSOpcode.Notify), NotRule(makeRule("192.168.1.0/24
→˓"))}), RCodeAction(DNSRCode.REFUSED))

Changed in version 1.4.0: Before 1.4.0, the RCodes were in the dnsdist namespace. Use dnsdist.REFUSED
in these versions.

110 Chapter 18. Advanced Topics

dnsdist

Warning: Be wary of dnsdist caching the responses to NOTIFY queries and sending these to the wrong
clients. This is mitigated by default when the source IP of the client is passed using EDNS Client Subnet, but
not when the proxy protocol is used, so disabling caching for these kinds of queries is advised:

-- this rule will disable the caching of responses for NOTIFY queries
addAction(OpcodeRule(DNSOpcode.Notify), SetSkipCacheAction())

18.11 Running multiple instances

Sometimes, it can be advantageous to run multiple instances of dnsdist. Usecases can be:

• Multiple inbound IP addresses with different rulesets

• Taking advantage of more processes, using SO_REUSEPORT

dnsdist supports loading a different configuration file with the --config command line switch.

By default, SYSCONFDIR/dnsdist.conf is loaded. SYSCONFDIR is usually /etc or /etc/dnsdist.

18.11.1 Using systemd

On systems with systemd, instance services can be used. To create a dnsdist service named foo, create a
dnsdist-foo.conf in SYSCONFDIR, then run systemctl enable dnsdist@foo.service and
systemctl start dnsdist@foo.service.

18.12 Out-of-order

As of 1.6.0, dnsdist supports accepting and processing queries out-of-order as long as the maxInFlight param-
eter has been set on the frontend, via addLocal() and/or addTLSLocal(). Note that it is always enabled
on DoH frontends. As many as maxInFlight queries will then be read from a TCP connection, processed and
forwarded to a backend simultaneously. If there is more queries pending, they will be processed once a response
has been sent for one of the already processed queries.

Backends are assumed not to support out-of-order by default, so only one query at a time will be sent over a TCP
connection to a backend, meaning that up to maxInFlight connections to a backend might be needed to be able
to process all accepted queries. Setting maxInFlight to a value greater than zero on newServer() changes
that, and up to maxInFlight queries can be sent to a backend simultaneously over the same TCP connection.
This of course requires the backend to actually process incoming queries out-of-order, otherwise the latency will
be considerably increased, leading to timeouts and degraded service.

As of 1.6.0, only queries from the same incoming client connection will be sent to a server over a single outgoing
TCP connections. This will likely change in 1.7.0, once we have had time to check that it has no adverse effects.

Backends for which Proxy Protocol support has been enabled will never be able to reuse the same outgoing TCP
connections for different clients, given that the payload indicating the source IP of the client, as seen by dnsdist,
is sent once at the beginning of the TCP connection. For the same reason, it might not even be possible to reuse a
TCP connection for the same client if any Type-Length-Value data has been sent over that connection.

18.13 OCSP Stapling

dnsdist supports OCSP stapling for DNS over HTTPS and DNS over TLS since 1.4.0-rc1. OCSP, Online Certifi-
cate Status Protocol (RFC 6960) is a protocol allowing a client to check the expiration status of a certificate from
the certification authority (CA) that delivered it. Since the requirement for the client to first retrieve the certificate
then do additional steps to gather an OCSP response is not very efficient, and also discloses to the CA which
certificate is validated, a mechanism has been designed to allow the server to retrieve the OCSP response from the

18.11. Running multiple instances 111

https://tools.ietf.org/html/rfc6960.html

dnsdist

CA and provide it to the client during the TLS exchange. This mechanism is named the TLS Certificate Status
Request extension (RFC 6066), also known as OCSP stapling.

While OCSP stapling is a net win for the client, it means that the server needs to retrieve the OCSP response itself
and update it at regular interval, since the OCSP response tends to be short-lived by design.

dnsdist, as for example haproxy, only supports loading the OCSP response from a file, and has no embedded
HTTP client to retrieve the OCSP response and refresh it, leaving it to the administrator to regularly retrieve the
OCSP response and feed it to dnsdist.

18.13.1 Local PKI

When a local PKI is used to issue the certificate, or for testing purposes, dnsdist provides the
generateOCSPResponse() function to generate an OCSP response file for a certificate, using the certifi-
cate and private key of the certification authority that signed that certificate:

generateOCSPResponse(pathToServerCertificate, pathToCACertificate,
→˓pathToCAPrivateKey, outputFile, numberOfDaysOfValidity,
→˓numberOfMinutesOfValidity)

The resulting file can be directly used with the addDOHLocal() or the addTLSLocal() functions:

addDOHLocal("127.0.0.1:443", "/path/to/the/server/certificate", "/path/to/the/
→˓server/private/key", { "/" }, { ocspResponses={"/path/to/generated/ocsp/response
→˓"}})
addTLSLocal("127.0.0.1:853", "/path/to/the/server/certificate", "/path/to/the/
→˓server/private/key", { ocspResponses={"/path/to/generated/ocsp/response"}})

After starting dnsdist, it is possible to update the OCSP response by connecting to the console, generating a new
OCSP response and calling reloadAllCertificates() so that dnsdist reloads the certificates, keys and
OCSP responses associated to the DNS over TLS and DNS over HTTPS contexts.

18.13.2 Certificate signed by an external authority

When the certificate has been signed by an external certification authority, the process is a bit more complicated
because the OCSP needs to be retrieved from that CA, and there are very few options available to do that at the
moment.

One of those options is to the use the OpenSSL ocsp command-line tool, although it’s a bit cumbersome to use.

The first step is to retrieve the URL at which the CA provides an OCSP responder. This can be done via the
OpenSSL x509 command:

openssl x509 -noout -ocsp_uri -in /path/to/the/server/certificate

It will output something like “http://ocsp.int-x3.letsencrypt.org”.

Now we can use the OCSP tool to request an OCSP response for this certificate from the CA, provided that we
have the certificate of the CA at hand, but it’s usually needed to get a correct chain of certificates anyway:

openssl ocsp -issuer /path/to/the/ca/certificate -cert /path/to/the/server/
→˓certificate -text -url url/we/retrieved/earlier -respout /path/to/write/the/OCSP/
→˓response

If everything goes well, this results in an OCSP response for the server certificate being written to
/path/to/write/the/OCSP/response. It seems that earlier versions of OpenSSL did not properly handle the URL,
and one needed to split the host and path parts of the OCSP URL, and use the -header option of the ocsp
command:

openssl ocsp -issuer /path/to/the/ca/certificate -cert /path/to/the/server/
→˓certificate -text -url <path> -header 'Host' <host> -respout /path/to/write/the/
→˓OCSP/response (continues on next page)

112 Chapter 18. Advanced Topics

https://tools.ietf.org/html/rfc6066.html
http://ocsp.int-x3.letsencrypt.org

dnsdist

(continued from previous page)

We can now use it directly with the addDOHLocal() or the addTLSLocal() functions:

addDOHLocal("127.0.0.1:443", "/path/to/the/server/certificate", "/path/to/the/
→˓server/private/key", { "/" }, { ocspResponses={"/path/to/write/the/OCSP/response
→˓"}})
addTLSLocal("127.0.0.1:853", "/path/to/the/server/certificate", "/path/to/the/
→˓server/private/key", { ocspResponses={"/path/to/write/the/OCSP/response"}})

Since this response will be only valid for a while, a script needs to be written to retrieve it regularly via cron
or any other mechanism. Once the new response has been retrieved, it is possible to tell dnsdist to reload it by
connecting to the console and calling reloadAllCertificates() so that it reloads the certificates, keys and
OCSP responses associated to the DNS over TLS and DNS over HTTPS contexts.

18.13.3 Testing

Once a valid OCSP response has retrieved and loaded into dnsdist, it is possible to test that everything is working
fine using the OpenSSL s_client command:

openssl s_client -connect <IP:port> -status -servername <SNI name to use> | grep -
→˓F 'OCSP Response Status'

should return something like OCSP Response Status: successful (0x0), indicating that the client
received a valid OCSP stapling response from the server.

18.14 TLS Certificates Management

TLS certificates and keys are used in several places of dnsdist, dealing with incoming connections over DNS-
over-TLS, DNS-over-HTTPS (DoH), DNS-over-HTTP/3 (DoH3) and DNS-over-QUIC (DoQ).

The related functions (addTLSLocal(), addDOHLocal(), addDOH3Local() and addDOQLocal()) ac-
cept:

• a path to a X.509 certificate file in PEM format, or a list of paths to such files, or a TLSCertificate
object

• a path to the private key file corresponding to the certificate, or a list of paths to such files whose order should
match the certificate files ones. This parameter is ignored if the first one contains TLSCertificate
objects, as keys are then retrieved from the objects.

For example, to load two certificates, one RSA and one ECDSA one:

addTLSLocal("192.0.2.1:853", { "/path/to/rsa/pem", "/path/to/ecdsa/pem" }, { "/
→˓path/to/rsa/key", "/path/to/ecdsa/key" })

18.14.1 Password-protected PKCS12 files

Note: PKCS12 support requires the use of the openssl TLS provider.

dnsdist can use password-protected PKCS12 certificates and keys. The certificate and key are loaded from
a password-protected file using newTLSCertificate() which returns a TLSCertificate object, which
can then be passed to addTLSLocal(), addDOHLocal(), addDOH3Local() and addDOQLocal().

18.14. TLS Certificates Management 113

dnsdist

myCertObject = newTLSCertificate("path/to/domain.p12", {password="passphrase"}) --
→˓use a password protected PKCS12 file

18.14.2 Reloading certificates

There are two ways to instruct dnsdist to reload the certificate and key files from disk. The easiest one is to use
reloadAllCertificates() which reload all DNSCrypt and TLS certificates, along with their associated
keys. The second allows a finer-grained, per-bind, approach:

-- reload certificates and keys for DoT binds:
for idx = 0, getTLSFrontendCount() - 1 do
frontend = getTLSFrontend(idx)
frontend:reloadCertificates()

end

-- reload certificates and keys for DoH binds:
for idx = 0, getDOHFrontendCount() - 1 do

frontend = getDOHFrontend(idx)
frontend:reloadCertificates()

end

-- reload certificates and keys for DoQ binds:
for idx = 0, getDOQFrontendCount() - 1 do

frontend = getDOQFrontend(idx)
frontend:reloadCertificates()

end

-- reload certificates and keys for DoH3 binds:
for idx = 0, getDOH3FrontendCount() - 1 do

frontend = getDOH3Frontend(idx)
frontend:reloadCertificates()

end

18.14.3 TLS sessions

See TLS Sessions Management.

18.14.4 OCSP stapling

See OCSP Stapling.

18.15 TLS Sessions Management

18.15.1 TLS sessions

One of the most costly TLS operation is the negotiation of a new session, since both the client and the server need
to generate and agree on cryptographic materials. In order to reduce that cost, TLS implements what is called
session resumption, where a client opening a new connection to a server can reuse the cryptographic materials
negotiated for a previous TLS session.

The following figures show that, with the same number of established incoming connections and queries per
second, the ratio of new TLS sessions and resumed sessions has a huge impact on CPU usage:

The necessary information to resume a session can either be kept on the server’s side (sessions) or on the client’s
one (tickets). Initially only the server-side approach existed, with two drawbacks:

114 Chapter 18. Advanced Topics

dnsdist

• the server needs to keep that information at hand, for a client that might never come back;

• sharing that information between several servers is not easy, especially in setups involving anycast or any
kind of cluster without strong session affinity.

Nowadays pretty much all clients support the second option, TLS tickets, where the need information is signed
and encrypted by the server before being sent to the client, which is responsible for storing it and sending it back
when it wants to establish a new session. That reduces the burden of the server while providing the same benefits.

The server uses Session Ticket Encryption Key (STEK) to sign and encrypt the information sent to the client,
making it possible to ensure that it is genuine and has not been tampered when the client provides it later. That
STEK can be shared by all dnsdist instances in the same cluster, making it possible for any server to resume a
session initially generated by a different server.

Knowing the STEK is all the information needed to be able to decrypt a live TLS session, but also a recorded
one, so it is very important to keep that key well-protected. It should never be exchanged in clear-text, and ideally
should not be written to persistent storage but be kept in a tmpfs with no swap configured. It should also be
regularly rotated to preserve TLS’ forward secrecy properties.

18.15.2 Keys management for incoming connections in dnsdist

dnsdist supports both server’s side (sessions) and client’s side (tickets) resumption for incoming connections
(client to dnsdist).

Since server-side sessions cannot be shared between several instances, and pretty much all clients support tick-
ets anyway, we do recommend disabling the sessions by passing numberOfStoredSessions=0 to the
addDOHLocal() (for DNS over HTTPS) and addTLSLocal() (for DNS over TLS) functions.

By default, dnsdist will generate a new, random STEK at startup for each addTLSLocal() and
addDOHLocal() directive, and rotate these STEKs every 12 hours. For each frontend it will keep 5 keys in
memory, with only the last one marked as active and used to encrypt new tickets while the remaining ones can
still be used to decrypt existing tickets after a rotation. The rotation time and the number of keys to keep in
memory can be configured via the numberOfTicketsKeys and ticketsKeysRotationDelay param-
eters of the addDOHLocal() (for DNS over HTTPS) and addTLSLocal() (for DNS over TLS) functions.
When the automatic rotation mechanism kicks in a new, random key will be added to the list of keys. With the
OpenSSL provider, the new key becomes active, so new tickets will be encrypted with this key, and the existing
keys become passive and only be used to decrypt existing tickets. With the GnuTLS provider only one key is
currently supported so the existing keys are immediately discarded. This automatic rotation can be disabled by
setting ticketsKeysRotationDelay to 0.

It is also possible to manually request a STEK rotation using the getDOHFrontend() (DoH) and
getTLSContext() (DoT) functions to retrieve the bind object, and calling its rotateTicketsKey method
(DOHFrontend:rotateTicketsKey(), TLSContext:rotateTicketsKey()).

18.15. TLS Sessions Management 115

dnsdist

The default settings should be fine for most deployments, but generating a random key for every dnsdist instance
will not allow resuming the session from a different instance in a cluster. It is also not very useful to have a
different key for every addTLSLocal() and addDOHLocal() directive if you are using the same certificate
and key, and it would be much better to use the same STEK to improve the session resumption ratio.

In that case it is possible to generate the STEK outside of dnsdist, write it to a file, distribute it to all instances
using something like rsync over SSH, and load that file from dnsdist. Please remember that the STEK contains
very sensitive data, and should be well-protected from access by unauthorized users. It means that special care
should be taken to setting the right permissions on that file. Automatic rotation should then be disabled by setting
ticketsKeysRotationDelay to 0.

For the OpenSSL provider (DoT, DoH), generating a random STEK in a file is a simple as getting 80 cryptograph-
ically secure random bytes and writing them to a file:

dd if=/dev/urandom of=/secure-tmp-fs/tickets.key bs=80 count=1

For the GnuTLS provider (DoT), the operation is the same but requires only 64 cryptographically secure random
bytes:

dd if=/dev/urandom of=/secure-tmp-fs/tickets.key bs=64 count=1

The file can then be loaded at startup by using the ticketKeyFile parameter of the addDOHLocal() (for
DNS over HTTPS) and addTLSLocal() (for DNS over TLS) functions.

If the file contains several keys, so for example 240 random bytes, dnsdist will load several STEKs, using the last
one for encrypting new tickets and all of them to decrypt existing tickets.

In order to rotate the keys at runtime, it is possible to instruct dnsdist to reload the content of the
certificates, keys, and STEKs from the same file used at configuration time, for all DoH and DoH
binds, by issuing the reloadAllCertificates() command. It can also be done one bind at
a time using the getDOHFrontend() (DoH) and getTLSContext() (DoT) functions to retrieve
the bind object, and calling its loadTicketsKeys method (DOHFrontend:loadTicketsKeys(),
TLSContext:loadTicketsKeys()).

One possible way of handling manual rotation of the key would be to first:

• generate N keys in N (1..N) separate files (for example executing dd if=/dev/urandom of=/
secure-tmp-fs/N.key bs=80 count=1 N times)

• concatenate the N files into a single file (/secure-tmp-fs/STEKs.key) that you pass to dnsdist’s
ticketKeyFile parameter

Then, when the STEK should be rotated:

• generate one new key file (N+1)

• delete the first key file (1)

• concatenate the 2..N+1 files into one (/secure-tmp-fs/STEKs.key)

• issue reloadAllCertificates() via the dnsdist console, or call loadTicketsKeys('/
secure-tmp-fs/STEKs.key') for all frontends

This way dnsdist can still decrypt incoming tickets that were encoded via the previous key (the active one is always
the one at the end of the file, and we start by removing the one at the beginning of the file).

18.15.3 Content of the STEK file

It does not really matter for most operations, but for later reference the format of the OpenSSL STEK is:

• a 16 bytes binary key identifier

• a 32 bytes AES 256 key

• a 32 bytes HMAC SHA-2 256 key

116 Chapter 18. Advanced Topics

dnsdist

For GnuTLS:

• a 16 bytes binary key identifier

• a 32 bytes AES 256 key

• a 16 bytes HMAC SHA-1 key

18.15.4 Sessions management for outgoing connections

Since 1.7, dnsdist supports securing the connection toward backends using DNS over TLS. For these connections,
it keeps a cache of TLS tickets to be able to resume a TLS session quickly. By default that cache contains up to
20 TLS tickets per-backend, is cleaned up every 60s, and TLS tickets expire if they have not been used after 600
seconds. These values can be set at configuration time via:

• setOutgoingTLSSessionsCacheMaxTicketsPerBackend()

• setOutgoingTLSSessionsCacheCleanupDelay()

• setOutgoingTLSSessionsCacheMaxTicketValidity()

18.16 Internal Design

This part of the documentation is intended for developers interested in understanding how the actual code works,
and might not be of much interest to regular users.

18.16.1 UDP design

For UDP queries, dnsdist stores the initial ID in a per-backend table called IDState. That ID then replaced by one
derived from a counter before forwarding the query to the backend, to prevent duplicated IDs sent clients from
making it to the backend. When the response is received, dnsdist uses the ID sent by the backend to find the
corresponding IDState and restores the initial ID, as well as some flags if needed, before sending the response to
the client.

That design means that there is a maximum of 65535 in-flight UDP queries per backend. It can actually be even
less than that if setMaxUDPOutstanding() is set to a lower value, for example to reduce the overall memory
usage.

Note that the source address and port used to contact a given backend is set at startup, for performance reasons,
and then only changes on reconnect. There might be more than one socket, and thus several ports, if the sockets
parameter was set to a higher value than 1 on the newServer() directive.

18.16. Internal Design 117

dnsdist

Note that, since 1.7, UDP queries can be passed to the backend over TCP if the backend is TCP-only, or configured
for DNS over TLS. This is done by passing the incoming query to a TCP worker over a pipe, as was already done
for incoming TCP queries.

In that case the response will be sent back, directly by the TCP worker, over UDP, instead of being passed back to
the UDP responder thread.

18.16.2 TCP / DoT design

For TCP and DoT, a single thread is created for each addLocal() and addTLSLocal() directive, listening
to the incoming TCP sockets, accepting new connections and distributing them over a pipe to the TCP worker
threads. These threads handle both the TCP connection with the client and the one with the backend.

18.16.3 DNS over HTTP/2 design

h2o (up to 1.7)

For DNS over HTTP/2, two threads are created for each addDOHLocal() directive, one handling the TLS and
HTTP layers, then passing the queries to the second one over a pipe. The second thread does DNS processing,
applying rules and forwarding the query to the backend if needed, over UDP. Note that even if the query does not
need to be passed to a backend (cache-hit, self-generated answer), the response will be passed back to the first
thread via a pipe, since only that thread deals with the client. If the response comes from a backend, it will be

118 Chapter 18. Advanced Topics

dnsdist

picked up by the regular UDP listener for that backend, the corresponding IDState object located, and the response
sent to the first thread over a pipe.

h2o (1.7 - 1.9)

Since 1.7, if the UDP response coming from the backend has been truncated (TC bit is set), dnsdist will retry
over TCP by passing the query to a TCP worker over a pipe, as was already done for incoming TCP queries. The
response will then be passed back to the DoH worker thread over the same pipe that for UDP queries. That also
happens if the backend is marked TCP-only, or configured for DNS over TLS, in which case the query is obviously
not sent over UDP first but immediately sent to a TCP worker thread.

nghttp2 (since 1.9)

Since 1.9 incoming DNS over HTTP/2 is no longer implemented via the h2o library but by nghttp2 instead.
The design is roughly the same but has been simplified a bit. As before, if the UDP response coming from the
backend has been truncated (TC bit is set), dnsdist will retry over TCP by passing the query to a TCP worker

18.16. Internal Design 119

dnsdist

over a pipe, as was already done for incoming TCP queries. The response will then be passed back to the DoH
worker thread over the same pipe that for UDP queries. That also happens if the backend is marked TCP-only, or
configured for DNS over TLS, in which case the query is obviously not sent over UDP first but immediately sent
to a TCP worker thread.

18.16.4 DNS over HTTP/3 design

DNS over HTTP/3 is implemented since 1.9.0 via the Quiche library. In 1.9.x, queries received over DNS over
HTTP/3 are forwarded to the backend over TCP (Do53 TCP, DoT or DoH2).

18.16.5 DoQ design

DNS over QUIC is implemented since 1.9.0 via the Quiche library. In 1.9.x, queries received over DNS over
QUIC are forwarded to the backend over TCP (Do53 TCP, DoT or DoH2).

120 Chapter 18. Advanced Topics

dnsdist

18.17 Asynchronous processing

Since 1.8.0, dnsdist has the ability to process queries and responses in an asynchronous way, suspending them to
continue processing other queries and responses, while we are waiting for an external event to occur.

This is done by calling the DNSQuestion:suspend() method on a query or a response to pause it, then later
the getAsynchronousObject() to retrieve it before resuming via AsynchronousObject:resume().

A timeout must be supplied when pausing a query or a response, to prevent paused objects from piling up, consum-
ing memory. When the timeout expires, the suspended object is automatically retrieved and resumes its processing
where it was left.

The following code shows a very simple example that forwards queries and responses to an external component
over a unix network socket, and resumes them when it gets an answer from the external component.

18.17. Asynchronous processing 121

dnsdist

local asyncID = 0
local asyncResponderEndpoint = newNetworkEndpoint('/path/to/unix/network/socket/

→˓remote/endpoint')
local listener = newNetworkListener()
listener:addUnixListeningEndpoint('/path/to/unix/network/socket/local/endpoint',

→˓0, gotAsyncResponse)
listener:start()

function gotAsyncResponse(endpointID, message, from)
local queryID = tonumber(message)
local asyncObject = getAsynchronousObject(asyncID, queryID)
local dq = asyncObject:getDQ()
dq:setTag(filteringTagName, filteringTagValue)
asyncObject:resume()

end

function passQueryToAsyncFilter(dq)
local timeout = 500 -- 500 ms
local buffer = dq:getContent()
local id = dq.dh:getID()
dq:suspend(asyncID, id, timeout)
asyncResponderEndpoint:send(buffer)
return DNSAction.Allow

end

function passResponseToAsyncFilter(dr)
local timeout = 500 -- 500 ms
local buffer = dr:getContent()
local id = dr.dh:getID()
dr:suspend(asyncID, id, timeout)
asyncResponderEndpoint:send(buffer)
return DNSResponseAction.Allow

end

addAction(AllRule(), LuaAction(passQueryToAsyncFilter))
addCacheHitResponseAction(AllRule(),

→˓LuaResponseAction(passResponseToAsyncFilter))
addResponseAction(AllRule(), LuaResponseAction(passResponseToAsyncFilter))

18.18 AF_XDP / XSK

Since 1.9.0, dnsdist can use AF_XDP for high performance UDP packet processing recent Linux kernels
(4.18+). It requires dnsdist to have the CAP_NET_ADMIN and CAP_SYS_ADMIN capabilities at startup, and
to have been compiled with the --with-xsk configure option.

Note: To retain the required capabilities it is necessary to call addCapabilitiesToRetain() during
startup, as dnsdist drops capabilities after startup.

Note: AppArmor users might need to update their policy to allow dnsdist to keep the capabili-
ties. Adding capability sys_admin, (for CAP_SYS_ADMIN) and capability net_admin, (for
CAP_NET_ADMIN) lines to the policy file is usually enough.

Warning: DNSdist’s AF_XDP implementation comes with several limitations:

122 Chapter 18. Advanced Topics

https://www.kernel.org/doc/html/v4.18/networking/af_xdp.html

dnsdist

• Asymmetrical network setups where the DNS query and its response do not go through the same network
device are not supported

• Ethernet packets larger than 2048 bytes are not supported

• IP and UDP-level checksums are not verified on incoming DNS messages

• IP options in incoming packets are not supported

The way AF_XDP works is that dnsdist allocates a number of frames in a memory area called a UMEM, which
is accessible both by the program, in userspace, and by the kernel. Using in-memory ring buffers, the receive
(RX), transmit (TX), completion (cq) and fill (fq) rings, the kernel can very efficiently pass raw incoming packets
to dnsdist, which can in return pass raw outgoing packets to the kernel. In addition to these, an eBPF XDP
program needs to be loaded to decide which packets to distribute via the AF_XDP socket (and to which, as there are
usually more than one). This program uses a BPF map of type XSKMAP (located at /sys/fs/bpf/dnsdist/
xskmap by default) that is populated by dnsdist at startup to locate the AF_XDP socket to use. dnsdist
also sets up two additional BPF maps (located at /sys/fs/bpf/dnsdist/xsk-destinations-v4 and
/sys/fs/bpf/dnsdist/xsk-destinations-v6) to let the XDP program know which IP destinations
are to be routed to the AF_XDP sockets and which are to be passed to the regular network stack (health-checks
queries and responses, for example). A ready-to-use XDP program can be found in the contrib directory of the
PowerDNS Git repository:

$ python xdp.py --xsk --interface eth0

Then dnsdist needs to be configured to use AF_XDP, first by creating a XskSocket object that are tied to a
specific queue of a specific network interface:

xsk = newXsk({ifName="enp1s0", NIC_queue_id=0, frameNums=65536, xskMapPath="/sys/
→˓fs/bpf/dnsdist/xskmap"})

This ties the new object to the first receive queue on enp1s0, allocating 65536 frames and populating the map
located at /sys/fs/bpf/dnsdist/xskmap.

Then we can tell dnsdist to listen for AF_XDP packets to 192.0.2.1:53, in addition to packets coming via
the regular network stack:

addLocal("192.0.2.1:53", {xskSocket=xsk})

In practice most high-speed (>= 10 Gbps) network interfaces support multiple queues to offer better performance,
so we need to allocate one XskSocket per queue. We can retrieve the number of queues for a given interface
via:

$ sudo ethtool -l enp1s0
Channel parameters for enp1s0:
Pre-set maximums:
RX: n/a
TX: n/a
Other: 1
Combined: 8
Current hardware settings:
RX: n/a
TX: n/a
Other: 1
Combined: 8

The Combined lines tell us that the interface supports 8 queues, so we can do something like this:

for i=1,8 do
xsk = newXsk({ifName="enp1s0", NIC_queue_id=i-1, frameNums=65536, xskMapPath="/

→˓sys/fs/bpf/dnsdist/xskmap"})
addLocal("192.0.2.1:53", {xskSocket=xsk, reusePort=true})

(continues on next page)

18.18. AF_XDP / XSK 123

https://github.com/PowerDNS/pdns/blob/master/contrib/xdp.py

dnsdist

(continued from previous page)

end

This will start one router thread per XskSocket object, plus one worker thread per addLocal() using that
XskSocket object.

We can instructs dnsdist to use AF_XDP to send and receive UDP packets to a backend in addition to packets
from clients:

local sockets = {}
for i=1,8 do
xsk = newXsk({ifName="enp1s0", NIC_queue_id=i-1, frameNums=65536, xskMapPath="/

→˓sys/fs/bpf/dnsdist/xskmap"})
table.insert(sockets, xsk)
addLocal("192.0.2.1:53", {xskSocket=xsk, reusePort=true})

end

newServer("192.0.2.2:53", {xskSocket=sockets})

This will start one router thread per XskSocket object, plus one worker thread per
addLocal()/newServer() using that XskSocket object.

We are not passing the MAC address of the backend (or the gateway to reach it) directly, so dnsdist will try to
fetch it from the system MAC address cache. This may not work, in which case we might need to pass explicitly:

newServer("192.0.2.2:53", {xskSocket=sockets, MACAddr='00:11:22:33:44:55'})

18.18.1 Performance

Using kxdpgun, we can compare the performance of dnsdist using the regular network stack and AF_XDP.

This test was realized using two Intel E3-1270 with 4 cores (8 threads) running at 3.8 Ghz, using Intel 82599 10
Gbps network cards. On both the injector running kxdpgun and the box running dnsdist there was no firewall,
the governor was set to performance, the UDP buffers were raised to 16777216 and the receive queue hash
policy set to use the IP addresses and ports (see Performance Tuning).

dnsdist was configured to immediately respond to incoming queries with REFUSED:

addAction(AllRule(), RCodeAction(DNSRCode.REFUSED))

On the injector box we executed:

$ sudo kxdpgun -Q 2500000 -p 53 -i random_1M 192.0.2.1 -t 60
using interface enp1s0, XDP threads 8, UDP, native mode
[...]

We first ran without AF_XDP:

for i=1,8 do
addLocal("192.0.2.1:53", {reusePort=true})

end

then with:

for i=1,8 do
xsk = newXsk({ifName="enp1s0", NIC_queue_id=i-1, frameNums=65536, xskMapPath="/

→˓sys/fs/bpf/dnsdist/xskmap"})
addLocal("192.0.2.1:53", {xskSocket=xsk, reusePort=true})

end

The first run handled roughly 1 million QPS, the second run 2.5 millions, with the CPU usage being much lower
in the AF_XDP case.

124 Chapter 18. Advanced Topics

https://www.knot-dns.cz/docs/latest/html/man_kxdpgun.html

dnsdist

18.18. AF_XDP / XSK 125

dnsdist

126 Chapter 18. Advanced Topics

CHAPTER

NINETEEN

REFERENCE GUIDES

These chapters contain extensive information on all functions and object available in dnsdist.

19.1 Rule Actions

Rule selectors need to be combined with an action for them to actually do something with the matched packets.
Some actions allow further processing of rules, this is noted in their description. Most of these start with ‘Set’
with a few exceptions, mostly for logging actions. These exceptions are:

• ClearRecordTypesResponseAction()

• KeyValueStoreLookupAction()

• DnstapLogAction()

• DnstapLogResponseAction()

• LimitTTLResponseAction()

• LogAction()

• LogResponseAction()

• NoneAction()

• RemoteLogAction()

• RemoteLogResponseAction()

• SNMPTrapAction()

• SNMPTrapResponseAction()

• TeeAction()

The following actions exist.

AllowAction()
Let these packets go through.

AllowResponseAction()
Let these packets go through.

ClearRecordTypesResponseAction(types)
New in version 1.8.0.

Removes given type(s) records from the response. Beware you can accidentally turn the answer into a
NODATA response without a SOA record in the additional section in which case you may want to use
NegativeAndSOAAction() to generate an answer, see example below. Subsequent rules are processed
after this action.

127

dnsdist

-- removes any HTTPS record in the response
addResponseAction(

QNameRule('www.example.com.'),
ClearRecordTypesResponseAction(DNSQType.HTTPS)

)
-- reply directly with NODATA and a SOA record as we know the answer will be
→˓empty
addAction(

AndRule{QNameRule('www.example.com.'), QTypeRule(DNSQType.HTTPS)},
NegativeAndSOAAction(false, 'example.com.', 3600, 'ns.example.com.',

→˓'postmaster.example.com.', 1, 1800, 900, 604800, 86400)
)

Parameters types (int) – a single type or a list of types to remove

ContinueAction(action)
New in version 1.4.0.

Execute the specified action and override its return with None, making it possible to continue the processing.
Subsequent rules are processed after this action.

Parameters action (int) – Any other action

DelayAction(milliseconds)
Delay the response by the specified amount of milliseconds (UDP-only). Note that the sending of the query
to the backend, if needed, is not delayed. Only the sending of the response to the client will be delayed.
Subsequent rules are processed after this action.

Parameters milliseconds (int) – The amount of milliseconds to delay the response

DelayResponseAction(milliseconds)
Delay the response by the specified amount of milliseconds (UDP-only). The only difference between
this action and DelayAction() is that they can only be applied on, respectively, responses and queries.
Subsequent rules are processed after this action.

Parameters milliseconds (int) – The amount of milliseconds to delay the response

DisableECSAction()
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use SetDisableECSAction()
instead.

Disable the sending of ECS to the backend. Subsequent rules are processed after this action.

DisableValidationAction()
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetDisableValidationAction() instead.

Set the CD bit in the query and let it go through. Subsequent rules are processed after this action.

DnstapLogAction(identity, logger[, alterFunction])
Send the current query to a remote logger as a dnstap message. alterFunction is a callback, receiving
a DNSQuestion and a DnstapMessage, that can be used to modify the message. Subsequent rules are
processed after this action.

Parameters

• identity (string) – Server identity to store in the dnstap message

• logger – The FrameStreamLogger or RemoteLogger object to write to

• alterFunction – A Lua function to alter the message before sending

128 Chapter 19. Reference Guides

dnsdist

DnstapLogResponseAction(identity, logger[, alterFunction])
Send the current response to a remote logger as a dnstap message. alterFunction is a callback, receiv-
ing a DNSQuestion and a DnstapMessage, that can be used to modify the message. Subsequent rules
are processed after this action.

Parameters

• identity (string) – Server identity to store in the dnstap message

• logger – The FrameStreamLogger or RemoteLogger object to write to

• alterFunction – A Lua function to alter the message before sending

DropAction()
Drop the packet.

DropResponseAction()
Drop the packet.

ECSOverrideAction(override)
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetECSOverrideAction() instead.

Whether an existing EDNS Client Subnet value should be overridden (true) or not (false). Subsequent rules
are processed after this action.

Parameters override (bool) – Whether or not to override ECS value

ECSPrefixLengthAction(v4, v6)
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetECSPrefixLengthAction() instead.

Set the ECS prefix length. Subsequent rules are processed after this action.

Parameters

• v4 (int) – The IPv4 netmask length

• v6 (int) – The IPv6 netmask length

ERCodeAction(rcode[, options])
New in version 1.4.0.

Changed in version 1.5.0: Added the optional parameter options.

Reply immediately by turning the query into a response with the specified EDNS extended rcode. rcode
can be specified as an integer or as one of the built-in RCode.

Parameters

• rcode (int) – The extended RCODE to respond with.

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

19.1. Rule Actions 129

dnsdist

HTTPStatusAction(status, body, contentType=""[, options])
New in version 1.4.0.

Changed in version 1.5.0: Added the optional parameter options.

Return an HTTP response with a status code of ‘’status”. For HTTP redirects, ‘’body” should be the redirect
URL.

Parameters

• status (int) – The HTTP status code to return.

• body (string) – The body of the HTTP response, or a URL if the status code is a
redirect (3xx).

• contentType (string) – The HTTP Content-Type header to return for a 200 re-
sponse, ignored otherwise. Default is ‘’application/dns-message”.

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

KeyValueStoreLookupAction(kvs, lookupKey, destinationTag)
New in version 1.4.0.

Does a lookup into the key value store referenced by ‘kvs’ using the key returned by ‘lookup-
Key’, and storing the result if any into the tag named ‘destinationTag’. The store can be a
CDB (newCDBKVStore()) or a LMDB database (newLMDBKVStore()). The key can be
based on the qname (KeyValueLookupKeyQName() and KeyValueLookupKeySuffix()),
source IP (KeyValueLookupKeySourceIP()) or the value of an existing tag
(KeyValueLookupKeyTag()). Subsequent rules are processed after this action. Note that the
tag is always created, even if there was no match, but in that case the content is empty.

Parameters

• kvs (KeyValueStore) – The key value store to query

• lookupKey (KeyValueLookupKey) – The key to use for the lookup

• destinationTag (string) – The name of the tag to store the result into

KeyValueStoreRangeLookupAction(kvs, lookupKey, destinationTag)
New in version 1.7.0.

Does a range-based lookup into the key value store referenced by ‘kvs’ using the key returned by ‘lookup-
Key’, and storing the result if any into the tag named ‘destinationTag’. This assumes that there is a key
in network byte order for the last element of the range (for example 2001:0db8:ffff:ffff:ffff:ffff:ffff:ffff for
2001:db8::/32) which contains the first element of the range (2001:0db8:0000:0000:0000:0000:0000:0000)
(optionally followed by any data) as value, also in network byte order, and that there is no overlapping
ranges in the database. This requires that the underlying store supports ordered keys, which is true for
LMDB but not for CDB.

Subsequent rules are processed after this action.

Parameters

• kvs (KeyValueStore) – The key value store to query

• lookupKey (KeyValueLookupKey) – The key to use for the lookup

• destinationTag (string) – The name of the tag to store the result into

130 Chapter 19. Reference Guides

dnsdist

LimitTTLResponseAction(min[, max[, types]])
New in version 1.8.0.

Cap the TTLs of the response to the given boundaries.

Parameters

• min (int) – The minimum allowed value

• max (int) – The maximum allowed value

• of int (list) – The record types to cap the TTL for. Default is empty which means
all records will be capped.

LogAction([filename[, binary[, append[, buffered[, verboseOnly[, includeTimestamp]]]]]])
Changed in version 1.4.0: Added the optional parameters verboseOnly and includeTimestamp,
made filename optional.

Changed in version 1.7.0: Added the reload method.

Log a line for each query, to the specified file if any, to the console (require verbose) if the empty string
is given as filename.

If an empty string is supplied in the file name, the logging is done to stdout, and only in verbose mode by
default. This can be changed by setting verboseOnly to false.

When logging to a file, the binary optional parameter specifies whether we log in binary form (default)
or in textual form. Before 1.4.0 the binary log format only included the qname and qtype. Since 1.4.0 it
includes an optional timestamp, the query ID, qname, qtype, remote address and port.

The append optional parameter specifies whether we open the file for appending or truncate each time
(default). The buffered optional parameter specifies whether writes to the file are buffered (default) or
not.

Since 1.7.0 calling the reload() method on the object will cause it to close and re-open the log file, for
rotation purposes.

Subsequent rules are processed after this action.

Parameters

• filename (string) – File to log to. Set to an empty string to log to the normal
stdout log, this only works when -v is set on the command line.

• binary (bool) – Do binary logging. Default true

• append (bool) – Append to the log. Default false

• buffered (bool) – Use buffered I/O. Default true

• verboseOnly (bool) – Whether to log only in verbose mode when logging to stdout.
Default is true

• includeTimestamp (bool) – Whether to include a timestamp for every entry. De-
fault is false

LogResponseAction([filename[, append[, buffered[, verboseOnly[, includeTimestamp]]]]]])
New in version 1.5.0.

Changed in version 1.7.0: Added the reload method.

Log a line for each response, to the specified file if any, to the console (require verbose) if the empty
string is given as filename.

If an empty string is supplied in the file name, the logging is done to stdout, and only in verbose mode by
default. This can be changed by setting verboseOnly to false.

The append optional parameter specifies whether we open the file for appending or truncate each time
(default). The buffered optional parameter specifies whether writes to the file are buffered (default) or
not.

19.1. Rule Actions 131

dnsdist

Since 1.7.0 calling the reload() method on the object will cause it to close and re-open the log file, for
rotation purposes.

Subsequent rules are processed after this action.

Parameters

• filename (string) – File to log to. Set to an empty string to log to the normal
stdout log, this only works when -v is set on the command line.

• append (bool) – Append to the log. Default false

• buffered (bool) – Use buffered I/O. Default true

• verboseOnly (bool) – Whether to log only in verbose mode when logging to stdout.
Default is true

• includeTimestamp (bool) – Whether to include a timestamp for every entry. De-
fault is false

LuaAction(function)
Invoke a Lua function that accepts a DNSQuestion.

The function should return a DNSAction. If the Lua code fails, ServFail is returned.

Parameters function (string) – the name of a Lua function

LuaFFIAction(function)
New in version 1.5.0.

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return a DNSAction. If the Lua code fails, ServFail is returned.

Parameters function (string) – the name of a Lua function

LuaFFIPerThreadAction(function)
New in version 1.7.0.

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return a DNSAction. If the Lua code fails, ServFail is returned.

The function will be invoked in a per-thread Lua state, without access to the global Lua state. All constants
(DNSQType, RCode, . . .) are available in that per-thread context, as well as all FFI functions. Objects
and their bindings that are not usable in a FFI context (DNSQuestion, DNSDistProtoBufMessage,
PacketCache, . . .) are not available.

Parameters function (string) – a Lua string returning a Lua function

LuaFFIPerThreadResponseAction(function)
New in version 1.7.0.

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return a DNSResponseAction. If the Lua code fails, ServFail is returned.

The function will be invoked in a per-thread Lua state, without access to the global Lua state. All constants
(DNSQType, RCode, . . .) are available in that per-thread context, as well as all FFI functions. Objects
and their bindings that are not usable in a FFI context (DNSQuestion, DNSDistProtoBufMessage,
PacketCache, . . .) are not available.

Parameters function (string) – a Lua string returning a Lua function

LuaFFIResponseAction(function)
New in version 1.5.0.

132 Chapter 19. Reference Guides

dnsdist

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return a DNSResponseAction. If the Lua code fails, ServFail is returned.

Parameters function (string) – the name of a Lua function

LuaResponseAction(function)
Invoke a Lua function that accepts a DNSResponse.

The function should return a DNSResponseAction. If the Lua code fails, ServFail is returned.

Parameters function (string) – the name of a Lua function

MacAddrAction(option)
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use SetMacAddrAction()
instead.

Add the source MAC address to the query as EDNS0 option option. This action is currently only sup-
ported on Linux. Subsequent rules are processed after this action.

Parameters option (int) – The EDNS0 option number

NegativeAndSOAAction(nxd, zone, ttl, mname, rname, serial, refresh, retry, expire, minimum[, op-
tions])

New in version 1.6.0.

Changed in version 1.8.0: Added the soaInAuthoritySection option.

Turn a question into a response, either a NXDOMAIN or a NODATA one based on ‘’nxd”, setting the
QR bit to 1 and adding a SOA record in the additional section. Note that this function was called
SetNegativeAndSOAAction() before 1.6.0.

Parameters

• nxd (bool) – Whether the answer is a NXDOMAIN (true) or a NODATA (false)

• zone (string) – The owner name for the SOA record

• ttl (int) – The TTL of the SOA record

• mname (string) – The mname of the SOA record

• rname (string) – The rname of the SOA record

• serial (int) – The value of the serial field in the SOA record

• refresh (int) – The value of the refresh field in the SOA record

• retry (int) – The value of the retry field in the SOA record

• expire (int) – The value of the expire field in the SOA record

• minimum (int) – The value of the minimum field in the SOA record

• options (table) – A table with key: value pairs with options

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

19.1. Rule Actions 133

dnsdist

• soaInAuthoritySection: bool - Place the SOA record in the authority section for a complete
NXDOMAIN/NODATA response that works as a cacheable negative response, rather than the RPZ-
style response with a purely informational SOA in the additional section. Default is false (SOA in
additional section).

NoneAction()
Does nothing. Subsequent rules are processed after this action.

NoRecurseAction()
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use SetNoRecurseAction()
instead.

Strip RD bit from the question, let it go through. Subsequent rules are processed after this action.

PoolAction(poolname[, stop])
Changed in version 1.8.0: Added the stop optional parameter.

Send the packet into the specified pool. If stop is set to false, subsequent rules will be processed after this
action.

Parameters

• poolname (string) – The name of the pool

• stop (bool) – Whether to stop processing rules after this action. Default is true,
meaning the remaining rules will not be processed.

QPSAction(maxqps)
Drop a packet if it does exceed the maxqps queries per second limits. Letting the subsequent rules apply
otherwise.

Parameters maxqps (int) – The QPS limit

QPSPoolAction(maxqps, poolname[, stop])
Changed in version 1.8.0: Added the stop optional parameter.

Send the packet into the specified pool only if it does not exceed the maxqps queries per second limits. If
stop is set to false, subsequent rules will be processed after this action. Letting the subsequent rules apply
otherwise.

Parameters

• maxqps (int) – The QPS limit for that pool

• poolname (string) – The name of the pool

• stop (bool) – Whether to stop processing rules after this action. Default is true,
meaning the remaining rules will not be processed.

RCodeAction(rcode[, options])
Changed in version 1.5.0: Added the optional parameter options.

Reply immediately by turning the query into a response with the specified rcode. rcode can be specified
as an integer or as one of the built-in RCode.

Parameters

• rcode (int) – The RCODE to respond with.

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

134 Chapter 19. Reference Guides

dnsdist

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

RemoteLogAction(remoteLogger[, alterFunction[, options[, metas]]])
Changed in version 1.4.0: ipEncryptKey optional key added to the options table.

Changed in version 1.8.0: metas optional parameter added. exportTags optional key added to the
options table.

Send the content of this query to a remote logger via Protocol Buffer. alterFunction is a callback,
receiving a DNSQuestion and a DNSDistProtoBufMessage, that can be used to modify the Protocol
Buffer content, for example for anonymization purposes. Since 1.8.0 it is possible to add configurable meta-
data fields to the Protocol Buffer message via the metas parameter, which takes a list of name``=``key
pairs. For each entry in the list, a new value named name will be added to the message with the value
corresponding to the key. Available keys are:

• doh-header:<HEADER>: the content of the corresponding <HEADER> HTTP header for DoH
queries, empty otherwise

• doh-host: the Host header for DoH queries, empty otherwise

• doh-path: the HTTP path for DoH queries, empty otherwise

• doh-query-string: the HTTP query string for DoH queries, empty otherwise

• doh-scheme: the HTTP scheme for DoH queries, empty otherwise

• pool: the currently selected pool of servers

• proxy-protocol-value:<TYPE>: the content of the proxy protocol value of type <TYPE>, if
any

• proxy-protocol-values: the content of all proxy protocol values as a “<type1>:<value1>”,
. . . , “<typeN>:<valueN>” strings

• b64-content: the base64-encoded DNS payload of the current query

• sni: the Server Name Indication value for queries received over DoT or DoH. Empty otherwise.

• tag:<TAG>: the content of the corresponding <TAG> if any

• tags: the list of all tags, and their values, as a “<key1>:<value1>”, . . . , “<keyN>:<valueN>” strings.
Note that a tag with an empty value will be exported as “<key>”, not “<key>:”.

Subsequent rules are processed after this action.

Parameters

• remoteLogger (string) – The remoteLogger object to write to

• alterFunction (string) – Name of a function to modify the contents of the logs
before sending

• options (table) – A table with key: value pairs.

• metas (table) – A list of name``=``key pairs, for meta-data to be added to Proto-
col Buffer message.

Options:

• serverID="": str - Set the Server Identity field.

• ipEncryptKey="": str - A key, that can be generated via the makeIPCipherKey() function,
to encrypt the IP address of the requestor for anonymization purposes. The encryption is done using
ipcrypt for IPv4 and a 128-bit AES ECB operation for IPv6.

• exportTags="": str - The comma-separated list of keys of internal tags to export into the tags
Protocol Buffer field, as “key:value” strings. Note that a tag with an empty value will be exported as
“<key>”, not “<key>:”. An empty string means that no internal tag will be exported. The special value
* means that all tags will be exported.

19.1. Rule Actions 135

dnsdist

RemoteLogResponseAction(remoteLogger[, alterFunction[, includeCNAME[, options[, metas]]]
])

Changed in version 1.4.0: ipEncryptKey optional key added to the options table.

Changed in version 1.8.0: metas optional parameter added. exportTags optional key added to the
options table.

Changed in version 1.9.0: exportExtendedErrorsToMeta optional key added to the options table.

Send the content of this response to a remote logger via Protocol Buffer. alterFunction is the same
callback that receiving a DNSQuestion and a DNSDistProtoBufMessage, that can be used to modify
the Protocol Buffer content, for example for anonymization purposes. includeCNAME indicates whether
CNAME records inside the response should be parsed and exported. The default is to only exports A and
AAAA records. Since 1.8.0 it is possible to add configurable meta-data fields to the Protocol Buffer message
via the metas parameter, which takes a list of name``=``key pairs. See RemoteLogAction() for
the list of available keys. Subsequent rules are processed after this action.

Parameters

• remoteLogger (string) – The remoteLogger object to write to

• alterFunction (string) – Name of a function to modify the contents of the logs
before sending

• includeCNAME (bool) – Whether or not to parse and export CNAMEs. Default false

• options (table) – A table with key: value pairs.

• metas (table) – A list of name``=``key pairs, for meta-data to be added to Proto-
col Buffer message.

Options:

• serverID="": str - Set the Server Identity field.

• ipEncryptKey="": str - A key, that can be generated via the makeIPCipherKey() function,
to encrypt the IP address of the requestor for anonymization purposes. The encryption is done using
ipcrypt for IPv4 and a 128-bit AES ECB operation for IPv6.

• exportTags="": str - The comma-separated list of keys of internal tags to export into the tags
Protocol Buffer field, as “key:value” strings. Note that a tag with an empty value will be exported as
“<key>”, not “<key>:”. An empty string means that no internal tag will be exported. The special value
* means that all tags will be exported.

• exportExtendedErrorsToMeta="": str - Export Extended DNS Errors present in the DNS
response, if any, into the meta Protocol Buffer field using the specified key. The EDE info code will
be exported as an integer value, and the EDE extra text, if present, as a string value.

SetAdditionalProxyProtocolValueAction(type, value)
New in version 1.6.0.

Add a Proxy-Protocol Type-Length value to be sent to the server along with this query. It does not replace
any existing value with the same type but adds a new value. Be careful that Proxy Protocol values are sent
once at the beginning of the TCP connection for TCP and DoT queries. That means that values received on
an incoming TCP connection will be inherited by subsequent queries received over the same incoming TCP
connection, if any, but values set to a query will not be inherited by subsequent queries. Subsequent rules
are processed after this action.

Parameters

• type (int) – The type of the value to send, ranging from 0 to 255 (both included)

• value (str) – The binary-safe value

SetDisableECSAction()
New in version 1.6.0.

Disable the sending of ECS to the backend. Subsequent rules are processed after this action. Note that this
function was called DisableECSAction() before 1.6.0.

136 Chapter 19. Reference Guides

dnsdist

SetDisableValidationAction()
New in version 1.6.0.

Set the CD bit in the query and let it go through. Subsequent rules are processed after this action. Note that
this function was called DisableValidationAction() before 1.6.0.

SetECSAction(v4[, v6])
Set the ECS prefix and prefix length sent to backends to an arbitrary value. If both IPv4 and IPv6 masks are
supplied the IPv4 one will be used for IPv4 clients and the IPv6 one for IPv6 clients. Otherwise the first
mask is used for both, and can actually be an IPv6 mask. Subsequent rules are processed after this action.

Parameters

• v4 (string) – The IPv4 netmask, for example “192.0.2.1/32”

• v6 (string) – The IPv6 netmask, if any

SetECSOverrideAction(override)
New in version 1.6.0.

Whether an existing EDNS Client Subnet value should be overridden (true) or not (false). Subsequent rules
are processed after this action. Note that this function was called ECSOverrideAction() before 1.6.0.

Parameters override (bool) – Whether or not to override ECS value

SetECSPrefixLengthAction(v4, v6)
New in version 1.6.0.

Set the ECS prefix length. Subsequent rules are processed after this action. Note that this function was
called ECSPrefixLengthAction() before 1.6.0.

Parameters

• v4 (int) – The IPv4 netmask length

• v6 (int) – The IPv6 netmask length

SetEDNSOptionAction(option)
New in version 1.7.0.

Add arbitrary EDNS option and data to the query. Any existing EDNS content with the same option code
will be overwritten. Subsequent rules are processed after this action.

Parameters

• option (int) – The EDNS option number

• data (string) – The EDNS0 option raw content

SetExtendedDNSErrorAction(infoCode[, extraText])
New in version 1.9.0.

Set an Extended DNS Error status that will be added to the response corresponding to the current query.
Subsequent rules are processed after this action.

Parameters

• infoCode (int) – The EDNS Extended DNS Error code

• extraText (string) – The optional EDNS Extended DNS Error extra text

SetExtendedDNSErrorResponseAction(infoCode[, extraText])
New in version 1.9.0.

Set an Extended DNS Error status that will be added to this response. Subsequent rules are processed after
this action.

Parameters

• infoCode (int) – The EDNS Extended DNS Error code

• extraText (string) – The optional EDNS Extended DNS Error extra text

19.1. Rule Actions 137

dnsdist

SetMacAddrAction(option)
New in version 1.6.0.

Add the source MAC address to the query as EDNS0 option option. This action is currently only
supported on Linux. Subsequent rules are processed after this action. Note that this function was called
MacAddrAction() before 1.6.0.

Parameters option (int) – The EDNS0 option number

SetMaxReturnedTTLAction(max)
New in version 1.8.0.

Cap the TTLs of the response to the given maximum, but only after inserting the response into the packet
cache with the initial TTL values.

Parameters max (int) – The maximum allowed value

SetMaxReturnedTTLResponseAction(max)
New in version 1.8.0.

Cap the TTLs of the response to the given maximum, but only after inserting the response into the packet
cache with the initial TTL values.

Parameters max (int) – The maximum allowed value

SetMaxTTLResponseAction(max)
New in version 1.8.0.

Cap the TTLs of the response to the given maximum.

Parameters max (int) – The maximum allowed value

SetMinTTLResponseAction(min)
New in version 1.8.0.

Cap the TTLs of the response to the given minimum.

Parameters min (int) – The minimum allowed value

SetNoRecurseAction()
New in version 1.6.0.

Strip RD bit from the question, let it go through. Subsequent rules are processed after this action. Note that
this function was called NoRecurseAction() before 1.6.0.

SetNegativeAndSOAAction(nxd, zone, ttl, mname, rname, serial, refresh, retry, expire, minimum[,
options])

New in version 1.5.0.

Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
NegativeAndSOAAction() instead.

Turn a question into a response, either a NXDOMAIN or a NODATA one based on ‘’nxd”, setting the QR
bit to 1 and adding a SOA record in the additional section.

Parameters

• nxd (bool) – Whether the answer is a NXDOMAIN (true) or a NODATA (false)

• zone (string) – The owner name for the SOA record

• ttl (int) – The TTL of the SOA record

• mname (string) – The mname of the SOA record

• rname (string) – The rname of the SOA record

• serial (int) – The value of the serial field in the SOA record

• refresh (int) – The value of the refresh field in the SOA record

138 Chapter 19. Reference Guides

dnsdist

• retry (int) – The value of the retry field in the SOA record

• expire (int) – The value of the expire field in the SOA record

• minimum (int) – The value of the minimum field in the SOA record

• options (table) – A table with key: value pairs with options

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

SetProxyProtocolValuesAction(values)
New in version 1.5.0.

Set the Proxy-Protocol Type-Length values to be sent to the server along with this query to values.
Subsequent rules are processed after this action.

Parameters values (table) – A table of types and values to send, for example: { [0] =
foo", [42] = "bar" }

SetReducedTTLResponseAction(percentage)
New in version 1.8.0.

Reduce the TTL of records in a response to a percentage of the original TTL. For example, passing 50
means that the original TTL will be cut in half. Subsequent rules are processed after this action.

Parameters percentage (int) – The percentage to use

SetSkipCacheAction()
New in version 1.6.0.

Don’t lookup the cache for this query, don’t store the answer. Subsequent rules are processed after this
action. Note that this function was called SkipCacheAction() before 1.6.0.

SetSkipCacheResponseAction()
New in version 1.6.0.

Don’t store this answer into the cache. Subsequent rules are processed after this action.

SetTagAction(name, value)
New in version 1.6.0.

Changed in version 1.7.0: Prior to 1.7.0 SetTagAction() would not overwrite an existing tag value if
already set.

Associate a tag named name with a value of value to this query, that will be passed on to the response.
This function will overwrite any existing tag value. Subsequent rules are processed after this action. Note
that this function was called TagAction() before 1.6.0.

Parameters

• name (string) – The name of the tag to set

• value (string) – The value of the tag

SetTagResponseAction(name, value)
New in version 1.6.0.

Changed in version 1.7.0: Prior to 1.7.0 SetTagResponseAction() would not overwrite an existing
tag value if already set.

19.1. Rule Actions 139

dnsdist

Associate a tag named name with a value of value to this response. This function will overwrite any
existing tag value. Subsequent rules are processed after this action. Note that this function was called
TagResponseAction() before 1.6.0.

Parameters

• name (string) – The name of the tag to set

• value (string) – The value of the tag

SetTempFailureCacheTTLAction(ttl)
New in version 1.6.0.

Set the cache TTL to use for ServFail and Refused replies. TTL is not applied for success-
ful replies. Subsequent rules are processed after this action. Note that this function was called
TempFailureCacheTTLAction() before 1.6.0.

Parameters ttl (int) – Cache TTL for temporary failure replies

SkipCacheAction()
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use SetSkipAction() instead.

Don’t lookup the cache for this query, don’t store the answer. Subsequent rules are processed after this
action.

SNMPTrapAction([message])
Send an SNMP trap, adding the optional message string as the query description. Subsequent rules are
processed after this action.

Parameters message (string) – The message to include

SNMPTrapResponseAction([message])
Send an SNMP trap, adding the optional message string as the query description. Subsequent rules are
processed after this action.

Parameters message (string) – The message to include

SpoofAction(ip[, options])
SpoofAction(ips[, options])

Changed in version 1.5.0: Added the optional parameter options.

Changed in version 1.6.0: Up to 1.6.0, the syntax for this function was SpoofAction(ips[, ip[,
options]]).

Forge a response with the specified IPv4 (for an A query) or IPv6 (for an AAAA) addresses. If you specify
multiple addresses, all that match the query type (A, AAAA or ANY) will get spoofed in.

Parameters

• ip (string) – An IPv4 and/or IPv6 address to spoof

• ips ({string}) – A table of IPv4 and/or IPv6 addresses to spoof

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

• ttl: int - The TTL of the record.

140 Chapter 19. Reference Guides

dnsdist

SpoofCNAMEAction(cname[, options])
Changed in version 1.5.0: Added the optional parameter options.

Forge a response with the specified CNAME value.

Parameters

• cname (string) – The name to respond with

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

• ttl: int - The TTL of the record.

SpoofRawAction(rawAnswer[, options])
SpoofRawAction(rawAnswers[, options])

New in version 1.5.0.

Changed in version 1.6.0: Up to 1.6.0, it was only possible to spoof one answer.

Changed in version 1.9.0: Added the optional parameter typeForAny.

Forge a response with the specified raw bytes as record data.

-- select queries for the 'raw.powerdns.com.' name and TXT type, and answer
→˓with both a "aaa" "bbbb" and "ccc" TXT record:
addAction(AndRule({QNameRule('raw.powerdns.com.'), QTypeRule(DNSQType.TXT)}),
→˓SpoofRawAction({"\003aaa\004bbbb", "\003ccc"}))
-- select queries for the 'raw-srv.powerdns.com.' name and SRV type, and
→˓answer with a '0 0 65535 srv.powerdns.com.' SRV record, setting the AA bit
→˓to 1 and the TTL to 3600s
addAction(AndRule({QNameRule('raw-srv.powerdns.com.'), QTypeRule(DNSQType.SRV)}
→˓), SpoofRawAction("\000\000\000\000\255\255\003srv\008powerdns\003com\000",
→˓{ aa=true, ttl=3600 }))
-- select reverse queries for '127.0.0.1' and answer with 'localhost'
addAction(AndRule({QNameRule('1.0.0.127.in-addr.arpa.'), QTypeRule(DNSQType.
→˓PTR)}), SpoofRawAction("\009localhost\000"))
-- rfc8482: Providing Minimal-Sized Responses to DNS Queries That Have
→˓QTYPE=ANY via HINFO of value "rfc8482"
addAction(QTypeRule(DNSQType.ANY), SpoofRawAction("\007rfc\056\052\056\050\000
→˓", { typeForAny=DNSQType.HINFO }))

DNSName:toDNSString() is convenient for converting names to wire format for passing to
SpoofRawAction.

sdig dumpluaraw and pdnsutil raw-lua-from-content from PowerDNS can generate raw
answers for you:

$ pdnsutil raw-lua-from-content SRV '0 0 65535 srv.powerdns.com.'
"\000\000\000\000\255\255\003srv\008powerdns\003com\000"
$ sdig 127.0.0.1 53 open-xchange.com MX recurse dumpluaraw
Reply to question for qname='open-xchange.com.', qtype=MX
Rcode: 0 (No Error), RD: 1, QR: 1, TC: 0, AA: 0, opcode: 0
0 open-xchange.com. IN MX "\000c\004mx\049\049\012open\045xchange\003com\000"
0 open-xchange.com. IN MX "\000\010\003mx\049\012open\045xchange\003com\000"
0 open-xchange.com. IN MX "\000\020\003mx\050\012open\045xchange\003com\000"

19.1. Rule Actions 141

dnsdist

Parameters

• rawAnswer (string) – The raw record data

• rawAnswers ({string}) – A table of raw record data to spoof

• options (table) – A table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

• ttl: int - The TTL of the record.

• typeForAny: int - The record type to use when responding to queries of type ANY, as using ANY
for the type of the response record would not make sense.

SpoofSVCAction(svcParams[, options])
New in version 1.7.0.

Forge a response with the specified SVC record data. If the list contains more than one
class:SVCRecordParameters (generated via newSVCRecordParameters()) object, they are all re-
turned, and should have different priorities. The hints provided in the SVC parameters, if any, will also
be added as A/AAAA records in the additional section, using the target name present in the parameters as
owner name if it’s not empty (root) and the qname instead.

:param list of class:SVCRecordParameters svcParams: The record data to return :param table options: A
table with key: value pairs with options.

Options:

• aa: bool - Set the AA bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ad: bool - Set the AD bit to this value (true means the bit is set, false means it’s cleared). Default is to
clear it.

• ra: bool - Set the RA bit to this value (true means the bit is set, false means it’s cleared). Default is to
copy the value of the RD bit from the incoming query.

• ttl: int - The TTL of the record.

SpoofPacketAction(rawPacket, len)
New in version 1.8.0.

Spoof a raw self-generated answer

Parameters

• rawPacket (string) – The raw wire-ready DNS answer

• len (int) – The length of the packet

TagAction(name, value)
Deprecated since version 1.6.0: This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetTagAction() instead.

Associate a tag named name with a value of value to this query, that will be passed on to the response.
Subsequent rules are processed after this action.

Parameters

• name (string) – The name of the tag to set

142 Chapter 19. Reference Guides

dnsdist

• value (string) – The value of the tag

TagResponseAction(name, value)
Deprecated since version 1.6.0: This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetTagResponseAction() instead.

Associate a tag named name with a value of value to this response. Subsequent rules are processed after
this action.

Parameters

• name (string) – The name of the tag to set

• value (string) – The value of the tag

TCAction()
Changed in version 1.7.0: This action is now only performed over UDP transports.

Create answer to query with the TC bit set, and the RA bit set to the value of RD in the query, to force the
client to TCP. Before 1.7.0 this action was performed even when the query had been received over TCP,
which required the use of TCPRule() to prevent the TC bit from being set over TCP transports.

TCResponseAction()
New in version 1.9.0.

Truncate an existing answer, to force the client to TCP. Only applied to answers that will be sent to the
client over TCP. In addition to the TC bit being set, all records are removed from the answer, authority and
additional sections.

TeeAction(remote[, addECS[, local[, addProxyProtocol]]])
Changed in version 1.8.0: Added the optional parameter local.

Changed in version 1.9.0: Added the optional parameter addProxyProtocol.

Send copy of query to remote, keep stats on responses. If addECS is set to true, EDNS Client Subnet
information will be added to the query. If addProxyProtocol is set to true, a Proxy Protocol v2 payload
will be prepended in front of the query. The payload will contain the protocol the initial query was received
over (UDP or TCP), as well as the initial source and destination addresses and ports. If local has provided
a value like “192.0.2.53”, dnsdist will try binding that address as local address when sending the queries.
Subsequent rules are processed after this action.

Parameters

• remote (string) – An IP:PORT combination to send the copied queries to

• addECS (bool) – Whether to add ECS information. Default false.

• local (str) – The local address to use to send queries. The default is to let the kernel
pick one.

• addProxyProtocol (bool) – Whether to prepend a proxy protocol v2 payload in
front of the query. Default to false.

TempFailureCacheTTLAction(ttl)
Deprecated since version 1.6.0.

This function has been deprecated in 1.6.0 and removed in 1.7.0, please use
SetTempFailureCacheTTLAction() instead.

Set the cache TTL to use for ServFail and Refused replies. TTL is not applied for successful replies.
Subsequent rules are processed after this action.

Parameters ttl (int) – Cache TTL for temporary failure replies

19.2 Configuration Reference

This page lists all configuration options for dnsdist.

19.2. Configuration Reference 143

dnsdist

Note: When an IPv6 IP:PORT combination is needed, the bracketed syntax from RFC 3986 should be used. e.g.
“[2001:DB8:14::C0FF:FEE]:5300”.

19.2.1 Functions and Types

Within dnsdist several core object types exist:

• Server: generated with newServer(), represents a downstream server

• ComboAddress: represents an IP address and port

• DNSName: represents a domain name

• Netmask: represents a netmask

• NetmaskGroup: represents a group of netmasks

• QPSLimiter: implements a QPS-based filter

• SuffixMatchNode: represents a group of domain suffixes for rapid testing of membership

• DNSHeader: represents the header of a DNS packet, see DNSHeader (dh) object

• ClientState: sometimes also called Bind or Frontend, represents the addresses and ports dnsdist is
listening on

The existence of most of these objects can mostly be ignored, unless you plan to write your own hooks and
policies, but it helps to understand an expressions like:

getServer(0).order=12 -- set order of server 0 to 12
getServer(0):addPool("abuse") -- add this server to the abuse pool

The . means order is a data member, while the : means addPool is a member function.

19.2.2 Global configuration

addCapabilitiesToRetain(capabilities)
New in version 1.7.0.

Accept a Linux capability as a string, or a list of these, to retain after startup so that privileged operations
can still be performed at runtime. Keeping CAP_BPF on kernel 5.8+ for example allows loading eBPF
programs and altering eBPF maps at runtime even if the kernel.unprivileged_bpf_disabled
sysctl is set. Note that this does not grant the capabilities to the process, doing so might be done by running
it as root which we don’t advise, or by adding capabilities via the systemd unit file, for example. Please also
be aware that switching to a different user via --uid will still drop all capabilities.

includeDirectory(path)
Include configuration files from path.

Parameters path (str) – The directory to load configuration files from. Each file must end
in .conf.

reloadAllCertificates()
New in version 1.4.0.

Reload all DNSCrypt and TLS certificates, along with their associated keys.

setSyslogFacility(facility)
New in version 1.4.0.

Changed in version 1.6.0: facility can now be a string.

Set the syslog logging facility to facility.

144 Chapter 19. Reference Guides

https://tools.ietf.org/html/rfc3986.html#section-3.2.2

dnsdist

Parameters or str facility (int) – The new facility as a numeric value (raw value as
defined in syslog.h), or as a case-insensitive string (“LOCAL0”, or “daemon”, for example).
Defaults to LOG_DAEMON.

Listen Sockets

addLocal(address[, options])
Changed in version 1.4.0: Removed doTCP from the options. A listen socket on TCP is always created.

Changed in version 1.5.0: Added tcpListenQueueSize parameter.

Changed in version 1.6.0: Added maxInFlight and maxConcurrentTCPConnections parameters.

Changed in version 1.9.0: Added the enableProxyProtocol parameter, which was always true
before 1.9.0, and the‘‘xskSocket‘‘ one.

Add to the list of listen addresses. Note that for IPv6 link-local addresses, it might be necessary to specify the
interface to use: fe80::1%eth0. On recent Linux versions specifying the interface via the interface
parameter should work as well.

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 53.

• options (table) – A table with key: value pairs with listen options.

Options:

• doTCP=true: bool - Also bind on TCP on address. Removed in 1.4.0.

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• tcpFastOpenQueueSize=0: int - Set the TCP Fast Open queue size, enabling TCP Fast Open
when available and the value is larger than 0.

• interface="": str - Set the network interface to use.

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• tcpListenQueueSize=SOMAXCONN: int - Set the size of the listen queue. Default is
SOMAXCONN.

• maxInFlight=0: int - Maximum number of in-flight queries. The default is 0, which disables
out-of-order processing.

• maxConcurrentTCPConnections=0: int - Maximum number of concurrent incoming TCP con-
nections. The default is 0 which means unlimited.

• enableProxyProtocol=true: str - Whether to expect a proxy protocol v2 header in front of
incoming queries coming from an address in setProxyProtocolACL(). Default is true, mean-
ing that queries are expected to have a proxy protocol payload if they come from an address present in
the setProxyProtocolACL() ACL.

• xskSocket: XskSocket - A socket to enable XSK / AF_XDP support for this frontend. See
AF_XDP / XSK for more information.

addLocal('0.0.0.0:5300', { reusePort=true })

This will bind to both UDP and TCP on port 5300 with SO_REUSEPORT enabled.

addDOHLocal(address[, certFile(s)[, keyFile(s)[, urls[, options]]]])
New in version 1.4.0.

19.2. Configuration Reference 145

dnsdist

Changed in version 1.5.0: internalPipeBufferSize, sendCacheControlHeaders,
sessionTimeout, trustForwardedForHeader options added. url now defaults to /
dns-query instead of /, and does exact matching instead of accepting sub-paths. Added
tcpListenQueueSize parameter.

Changed in version 1.6.0: enableRenegotiation, exactPathMatching,
maxConcurrentTCPConnections and releaseBuffers options added.
internalPipeBufferSize now defaults to 1048576 on Linux.

Changed in version 1.8.0: certFile now accepts a TLSCertificate object or a list of such objects
(see newTLSCertificate()) additionalAddresses, ignoreTLSConfigurationErrors
and keepIncomingHeaders options added.

Changed in version 1.9.0: enableProxyProtocol, ktls, library,
proxyProtocolOutsideTLS, readAhead, tlsAsyncMode options added.

Listen on the specified address and TCP port for incoming DNS over HTTPS connections, presenting the
specified X.509 certificate. See TLS Certificates Management for details about the handling of TLS certifi-
cates and keys. If no certificate (or key) files are specified, listen for incoming DNS over HTTP connections
instead. More information is available in DNS-over-HTTPS (DoH).

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 443.

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, a list of
paths to such files, or a TLSCertificate object.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones. Ignored if
certFile contains TLSCertificate objects.

• urls (str-or-list) – The path part of a URL, or a list of paths, to accept queries
on. Any query with a path matching exactly one of these will be treated as a DoH
query (sub-paths can be accepted by setting the exactPathMatching to false). The
default is /dns-query.

• options (table) – A table with key: value pairs with listen options.

Options:

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• tcpFastOpenQueueSize=0: int - Set the TCP Fast Open queue size, enabling TCP Fast Open
when available and the value is larger than 0.

• interface="": str - Set the network interface to use.

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• idleTimeout=30: int - Set the idle timeout, in seconds.

• ciphers: str - The TLS ciphers to use, in OpenSSL format. Ciphers for TLS 1.3 must be specified
via ciphersTLS13.

• ciphersTLS13: str - The TLS ciphers to use for TLS 1.3, in OpenSSL format.

• serverTokens: str - The content of the Server: HTTP header returned by dnsdist. The default is
“h2o/dnsdist” when h2o is used, “nghttp2-<version>/dnsdist” when nghttp2 is.

• customResponseHeaders={}: table - Set custom HTTP header(s) returned by dnsdist.

• ocspResponses: list - List of files containing OCSP responses, in the same order than the certifi-
cates and keys, that will be used to provide OCSP stapling responses.

146 Chapter 19. Reference Guides

dnsdist

• minTLSVersion: str - Minimum version of the TLS protocol to support. Possible values are ‘tls1.0’,
‘tls1.1’, ‘tls1.2’ and ‘tls1.3’. Default is to require at least TLS 1.0.

• numberOfTicketsKeys: int - The maximum number of tickets keys to keep in memory at the
same time. Only one key is marked as active and used to encrypt new tickets while the remaining ones
can still be used to decrypt existing tickets after a rotation. Default to 5.

• ticketKeyFile: str - The path to a file from where TLS tickets keys should be loaded, to support
RFC 5077. These keys should be rotated often and never written to persistent storage to preserve for-
ward secrecy. The default is to generate a random key. dnsdist supports several tickets keys to be able
to decrypt existing sessions after the rotation. See TLS Sessions Management for more information.

• ticketsKeysRotationDelay: int - Set the delay before the TLS tickets key is rotated, in sec-
onds. Default is 43200 (12h). A value of 0 disables the automatic rotation, which might be useful
when ticketKeyFile is used.

• sessionTimeout: int - Set the TLS session lifetime in seconds, this is used both for TLS ticket
lifetime and for sessions kept in memory.

• sessionTickets: bool - Whether session resumption via session tickets is enabled. Default is
true, meaning tickets are enabled.

• numberOfStoredSessions: int - The maximum number of sessions kept in memory at the same
time. Default is 20480. Setting this value to 0 disables stored session entirely.

• preferServerCiphers: bool - Whether to prefer the order of ciphers set by the server instead of
the one set by the client. Default is true, meaning that the order of the server is used. For OpenSSL
>= 1.1.1, setting this option also enables the temporary re-prioritization of the ChaCha20-Poly1305
cipher if the client prioritizes it.

• keyLogFile: str - Write the TLS keys in the specified file so that an external program can decrypt
TLS exchanges, in the format described in https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
NSS/Key_Log_Format. Note that this feature requires OpenSSL >= 1.1.1.

• sendCacheControlHeaders: bool - Whether to parse the response to find the lowest TTL and
set a HTTP Cache-Control header accordingly. Default is true.

• trustForwardedForHeader: bool - Whether to parse any existing X-Forwarded-For header in
the HTTP query and use the right-most value as the client source address and port, for ACL checks,
rules, logging and so on. Default is false.

• tcpListenQueueSize=SOMAXCONN: int - Set the size of the listen queue. Default is
SOMAXCONN.

• internalPipeBufferSize=0: int - Set the size in bytes of the internal buffer of the pipes used
internally to pass queries and responses between threads. Requires support for F_SETPIPE_SZ
which is present in Linux since 2.6.35. The actual size might be rounded up to a multiple of a page
size. 0 means that the OS default size is used. The default value is 0, except on Linux where it is
1048576 since 1.6.0.

• exactPathMatching=true: bool - Whether to do exact path matching of the query path against
the paths configured in urls (true, the default since 1.5.0) or to accepts sub-paths (false, and was the
default before 1.5.0). This option was introduced in 1.6.0.

• maxConcurrentTCPConnections=0: int - Maximum number of concurrent incoming TCP con-
nections. The default is 0 which means unlimited.

• releaseBuffers=true: bool - Whether OpenSSL should release its I/O buffers when a connec-
tion goes idle, saving roughly 35 kB of memory per connection.

• enableRenegotiation=false: bool - Whether secure TLS renegotiation should be enabled.
Disabled by default since it increases the attack surface and is seldom used for DNS.

• keepIncomingHeaders: bool - Whether to retain the incoming headers in memory, to be able
to use HTTPHeaderRule() or DNSQuestion.getHTTPHeaders(). Default is false. Before
1.8.0 the headers were always kept in-memory.

19.2. Configuration Reference 147

https://tools.ietf.org/html/rfc5077.html
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format

dnsdist

• additionalAddresses: list - List of additional addresses (with port) to listen on. Using this
option instead of creating a new frontend for each address avoids the creation of new thread and
Frontend objects, reducing the memory usage. The drawback is that there will be a single set of
metrics for all addresses.

• ignoreTLSConfigurationErrors=false: bool - Ignore TLS configuration errors (such as
invalid certificate path) and just issue a warning instead of aborting the whole process

• library: str - Which underlying HTTP2 library should be used, either h2o or nghttp2. Until 1.9.0
only h2o was available, but the use of this library is now deprecated as it is no longer maintained.
nghttp2 is the new default since 1.9.0.

• ktls=false: bool - Whether to enable the experimental kernel TLS support on Linux, if both the
kernel and the OpenSSL library support it. Default is false.

• tlsAsyncMode=false: bool - Whether to enable experimental asynchronous TLS I/O operations
if the nghttp2 library is used, OpenSSL is used as the TLS implementation and an asynchronous ca-
pable SSL engine (or provider) is loaded. See also loadTLSEngine() or loadTLSProvider()
to load the engine (or provider).

• readAhead: bool - When the TLS provider is set to OpenSSL, whether we tell the library to read as
many input bytes as possible, which leads to better performance by reducing the number of syscalls.
Default is true.

• proxyProtocolOutsideTLS: bool - When the use of incoming proxy protocol is enabled,
whether the payload is prepended after the start of the TLS session (so inside, meaning it is protected
by the TLS layer providing encryption and authentication) or not (outside, meaning it is in clear-text).
Default is false which means inside. Note that most third-party software like HAproxy expect the
proxy protocol payload to be outside, in clear-text.

• enableProxyProtocol=true: bool - Whether to expect a proxy protocol v2 header in front
of incoming queries coming from an address in setProxyProtocolACL(). Default is true,
meaning that queries are expected to have a proxy protocol payload if they come from an address
present in the setProxyProtocolACL() ACL.

addDOH3Local(address, certFile(s), keyFile(s)[, options])
New in version 1.9.0.

Listen on the specified address and UDP port for incoming DNS over HTTP3 connections, presenting
the specified X.509 certificate. See TLS Certificates Management for details about the handling of TLS
certificates and keys. More information is available in DNS-over-HTTP/3 (DoH3).

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 443.

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, a list of
paths to such files, or a TLSCertificate object.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones. Ignored if
certFile contains TLSCertificate objects.

• options (table) – A table with key: value pairs with listen options.

Options:

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• interface="": str - Set the network interface to use.

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• idleTimeout=5: int - Set the idle timeout, in seconds.

148 Chapter 19. Reference Guides

dnsdist

• internalPipeBufferSize=0: int - Set the size in bytes of the internal buffer of the pipes used
internally to pass queries and responses between threads. Requires support for F_SETPIPE_SZ
which is present in Linux since 2.6.35. The actual size might be rounded up to a multiple of a page
size. 0 means that the OS default size is used. The default value is 0, except on Linux where it is
1048576 since 1.6.0.

• maxInFlight=65535: int - Maximum number of in-flight queries. The default is 0, which disables
out-of-order processing.

• congestionControlAlgo="reno": str - The congestion control algorithm to be chosen be-
tween reno, cubic and bbr.

• keyLogFile: str - Write the TLS keys in the specified file so that an external program can decrypt
TLS exchanges, in the format described in https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
NSS/Key_Log_Format.

addDOQLocal(address, certFile(s), keyFile(s)[, options])
New in version 1.9.0.

Listen on the specified address and UDP port for incoming DNS over QUIC connections, presenting the
specified X.509 certificate. See TLS Certificates Management for details about the handling of TLS certifi-
cates and keys. More information is available at DNS-over-QUIC (DoQ).

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 853.

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, a list of
paths to such files, or a TLSCertificate object.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones. Ignored if
certFile contains TLSCertificate objects.

• options (table) – A table with key: value pairs with listen options.

Options:

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• interface="": str - Set the network interface to use.

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• idleTimeout=5: int - Set the idle timeout, in seconds.

• internalPipeBufferSize=0: int - Set the size in bytes of the internal buffer of the pipes used
internally to pass queries and responses between threads. Requires support for F_SETPIPE_SZ
which is present in Linux since 2.6.35. The actual size might be rounded up to a multiple of a page
size. 0 means that the OS default size is used. The default value is 0, except on Linux where it is
1048576 since 1.6.0.

• maxInFlight=65535: int - Maximum number of in-flight queries. The default is 0, which disables
out-of-order processing.

• congestionControlAlgo="reno": str - The congestion control algorithm to be chosen be-
tween reno, cubic and bbr.

• keyLogFile: str - Write the TLS keys in the specified file so that an external program can decrypt
TLS exchanges, in the format described in https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
NSS/Key_Log_Format.

addTLSLocal(address, certFile(s), keyFile(s)[, options])
Changed in version 1.4.0: ciphersTLS13, minTLSVersion, ocspResponses,
preferServerCiphers, keyLogFile options added.

19.2. Configuration Reference 149

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format

dnsdist

Changed in version 1.5.0: sessionTimeout and tcpListenQueueSize options added.

Changed in version 1.6.0: enableRenegotiation, maxConcurrentTCPConnections,
maxInFlight and releaseBuffers options added.

Changed in version 1.8.0: tlsAsyncMode option added.

Changed in version 1.8.0: certFile now accepts a TLSCertificate object or a list of such objects
(see newTLSCertificate()). additionalAddresses, ignoreTLSConfigurationErrors
and ktls options added.

Changed in version 1.9.0: enableProxyProtocol, readAhead and
proxyProtocolOutsideTLS options added.

Listen on the specified address and TCP port for incoming DNS over TLS connections, presenting the spec-
ified X.509 certificate. See TLS Certificates Management for details about the handling of TLS certificates
and keys. More information is available at DNS-over-TLS.

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 853.

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, a list of
paths to such files, or a TLSCertificate object.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones. Ignored if
certFile contains TLSCertificate objects.

• options (table) – A table with key: value pairs with listen options.

Options:

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• tcpFastOpenQueueSize=0: int - Set the TCP Fast Open queue size, enabling TCP Fast Open
when available and the value is larger than 0.

• interface="": str - Set the network interface to use.

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• provider: str - The TLS library to use between GnuTLS and OpenSSL, if they were available and
enabled at compilation time. Default is to use OpenSSL when available.

• ciphers: str - The TLS ciphers to use. The exact format depends on the provider used. When the
OpenSSL provider is used, ciphers for TLS 1.3 must be specified via ciphersTLS13.

• ciphersTLS13: str - The ciphers to use for TLS 1.3, when the OpenSSL provider is used. When
the GnuTLS provider is used, ciphers applies regardless of the TLS protocol and this setting is not
used.

• numberOfTicketsKeys: int - The maximum number of tickets keys to keep in memory at the
same time, if the provider supports it (GnuTLS doesn’t, OpenSSL does). Only one key is marked as
active and used to encrypt new tickets while the remaining ones can still be used to decrypt existing
tickets after a rotation. Default to 5.

• ticketKeyFile: str - The path to a file from where TLS tickets keys should be loaded, to support
RFC 5077. These keys should be rotated often and never written to persistent storage to preserve
forward secrecy. The default is to generate a random key. The OpenSSL provider supports several
tickets keys to be able to decrypt existing sessions after the rotation, while the GnuTLS provider only
supports one key. See TLS Sessions Management for more information.

• ticketsKeysRotationDelay: int - Set the delay before the TLS tickets key is rotated, in sec-
onds. Default is 43200 (12h). A value of 0 disables the automatic rotation, which might be useful
when ticketKeyFile is used.

150 Chapter 19. Reference Guides

https://tools.ietf.org/html/rfc5077.html

dnsdist

• sessionTimeout: int - Set the TLS session lifetime in seconds, this is used both for TLS ticket
lifetime and for sessions kept in memory.

• sessionTickets: bool - Whether session resumption via session tickets is enabled. Default is
true, meaning tickets are enabled.

• numberOfStoredSessions: int - The maximum number of sessions kept in memory at the same
time. At this time this is only supported by the OpenSSL provider, as stored sessions are not supported
with the GnuTLS one. Default is 20480. Setting this value to 0 disables stored session entirely.

• ocspResponses: list - List of files containing OCSP responses, in the same order than the certifi-
cates and keys, that will be used to provide OCSP stapling responses.

• minTLSVersion: str - Minimum version of the TLS protocol to support. Possible values are ‘tls1.0’,
‘tls1.1’, ‘tls1.2’ and ‘tls1.3’. Default is to require at least TLS 1.0. Note that this value is ignored
when the GnuTLS provider is in use, and the ciphers option should be set accordingly instead. For
example, ‘NORMAL:!VERS-TLS1.0:!VERS-TLS1.1’ will disable TLS 1.0 and 1.1.

• preferServerCiphers: bool - Whether to prefer the order of ciphers set by the server instead of
the one set by the client. Default is true, meaning that the order of the server is used. For OpenSSL
>= 1.1.1, setting this option also enables the temporary re-prioritization of the ChaCha20-Poly1305
cipher if the client prioritizes it.

• keyLogFile: str - Write the TLS keys in the specified file so that an external program can decrypt
TLS exchanges, in the format described in https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
NSS/Key_Log_Format. Note that this feature requires OpenSSL >= 1.1.1.

• tcpListenQueueSize=SOMAXCONN: int - Set the size of the listen queue. Default is
SOMAXCONN.

• maxInFlight=0: int - Maximum number of in-flight queries. The default is 0, which disables
out-of-order processing.

• maxConcurrentTCPConnections=0: int - Maximum number of concurrent incoming TCP con-
nections. The default is 0 which means unlimited.

• releaseBuffers=true: bool - Whether OpenSSL should release its I/O buffers when a connec-
tion goes idle, saving roughly 35 kB of memory per connection.

• enableRenegotiation=false: bool - Whether secure TLS renegotiation should be enabled
(OpenSSL only, the GnuTLS provider does not support it). Disabled by default since it increases the
attack surface and is seldom used for DNS.

• tlsAsyncMode=false: bool - Whether to enable experimental asynchronous TLS I/O operations
if OpenSSL is used as the TLS implementation and an asynchronous capable SSL engine (or provider)
is loaded. See also loadTLSEngine() or loadTLSProvider() to load the engine (or provider).

• additionalAddresses: list - List of additional addresses (with port) to listen on. Using this
option instead of creating a new frontend for each address avoids the creation of new thread and
Frontend objects, reducing the memory usage. The drawback is that there will be a single set of
metrics for all addresses.

• ignoreTLSConfigurationErrors=false: bool - Ignore TLS configuration errors (such as
invalid certificate path) and just issue a warning instead of aborting the whole process

• ktls=false: bool - Whether to enable the experimental kernel TLS support on Linux, if both the
kernel and the OpenSSL library support it. Default is false.

• readAhead: bool - When the TLS provider is set to OpenSSL, whether we tell the library to read as
many input bytes as possible, which leads to better performance by reducing the number of syscalls.
Default is true.

• proxyProtocolOutsideTLS: bool - When the use of incoming proxy protocol is enabled,
whether the payload is prepended after the start of the TLS session (so inside, meaning it is protected
by the TLS layer providing encryption and authentication) or not (outside, meaning it is in clear-text).
Default is false which means inside. Note that most third-party software like HAproxy expect the
proxy protocol payload to be outside, in clear-text.

19.2. Configuration Reference 151

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format

dnsdist

• enableProxyProtocol=true: str - Whether to expect a proxy protocol v2 header in front of
incoming queries coming from an address in setProxyProtocolACL(). Default is true, mean-
ing that queries are expected to have a proxy protocol payload if they come from an address present in
the setProxyProtocolACL() ACL.

setLocal(address[, options])
Remove the list of listen addresses and add a new one.

Parameters

• address (str) – The IP Address with an optional port to listen on. The default port
is 53.

• options (table) – A table with key: value pairs with listen options.

The options that can be set are the same as addLocal().

Control Socket, Console and Webserver

addConsoleACL(netmask)
Add a netmask to the existing console ACL, allowing remote clients to connect to the console. Please
make sure that encryption has been enabled with setKey() before doing so. The default is to only allow
127.0.0.1/8 and ::1/128.

Parameters netmask (str) – A CIDR netmask, e.g. "192.0.2.0/24". Without a sub-
netmask, only the specific address is allowed.

clearConsoleHistory()
New in version 1.6.0.

Clear the internal (in-memory) buffers of console commands. These buffers are used to provide the
delta() command and console completion and history, and can end up being quite large when a lot
of commands are issued via the console, consuming a noticeable amount of memory.

controlSocket(address)
Bind to addr and listen for a connection for the console. Since 1.3.0 only connections from local users
are allowed by default, addConsoleACL() and setConsoleACL() can be used to enable remote
connections. Please make sure that encryption has been enabled with setKey() before doing so. Enabling
encryption is also strongly advised for local connections, since not enabling it allows any local user to
connect to the console.

Parameters address (str) – An IP address with optional port. By default, the port is 5199.

delta()
Issuing delta on the console will print the changes to the configuration that have been made since startup.

inClientStartup()
Returns true while the console client is parsing the configuration.

inConfigCheck()
New in version 1.5.0.

Returns true while the configuration is being checked, ie when run with --check-config.

makeKey()
Generate and print an encryption key.

setConsoleConnectionsLogging(enabled)
Whether to log the opening and closing of console connections.

Parameters enabled (bool) – Default to true.

setConsoleMaximumConcurrentConnections(max)
New in version 1.6.0.

Set the maximum number of concurrent console connections.

152 Chapter 19. Reference Guides

dnsdist

Parameters max (int) – The maximum number of concurrent console connections, or 0 which
means an unlimited number. Defaults to 100

setKey(key)
Use key as shared secret between the client and the server

Parameters key (str) – An encoded key, as generated by makeKey()

setConsoleACL(netmasks)
Remove the existing console ACL and add the netmasks from the table, allowing remote clients to connect
to the console. Please make sure that encryption has been enabled with setKey() before doing so.

Parameters netmasks ({str}) – A table of CIDR netmask, e.g. {"192.0.2.0/24",
"2001:DB8:14::/56"}. Without a subnetmask, only the specific address is allowed.

showConsoleACL()
Print a list of all netmasks allowed to connect to the console.

testCrypto()
Test the crypto code, will report errors when something is not ok.

setConsoleOutputMaxMsgSize(size)
Set the maximum size in bytes of a single console message, default set to 10 MB.

Parameters size (int) – The new maximum size.

Webserver configuration

hashPassword(password[, workFactor])
New in version 1.7.0.

Hash the supplied password using a random salt, and returns a string that can be used with
setWebserverConfig().

Parameters

• - password (string) – The password to hash

• - workFactor (int) – The work factor to use for the hash function (currently
scrypt), as a power of two. Default is 1024.

webserver(listen_address[, password[, apikey[, customHeaders[, acl]]]])
Changed in version 1.5.0: acl optional parameter added.

Changed in version 1.6.0: The password parameter is now optional. The use of optional parameters is
now deprecated. Please use setWebserverConfig() instead.

Changed in version 1.8.0: The password, apikey, customHeaders and acl parameters is no longer
supported. Please use setWebserverConfig() instead.

Launch the Built-in webserver with statistics and the API. Note that the parameters are global,
so the parameter from the last webserver will override any existing ones. For this reason
setWebserverConfig() should be used instead of specifying optional parameters here.

Parameters

• listen_address (str) – The IP address and Port to listen on

• password (str) – The password required to access the webserver

• apikey (str) – The key required to access the API

• customHeaders ({[str]=str,...}) – Allows setting custom headers and re-
moving the defaults

• acl (str) – List of netmasks, as a string, that are allowed to open a connection
to the web server. Defaults to “127.0.0.1, ::1”. It accepts the same syntax that
NetmaskGroup:addMask() does

19.2. Configuration Reference 153

dnsdist

setAPIWritable(allow[, dir])
Allow modifications via the API. Optionally saving these changes to disk. Modifications done via the API
will not be written to the configuration by default and will not persist after a reload

Parameters

• allow (bool) – Set to true to allow modification through the API

• dir (str) – A valid directory where the configuration files will be written by the API.

setWebserverConfig(options)
Changed in version 1.5.0: acl optional parameter added.

Changed in version 1.6.0: statsRequireAuthentication, maxConcurrentConnections op-
tional parameters added.

Changed in version 1.7.0: The optional password and apiKey parameters now accept hashed passwords.
The optional hashPlaintextCredentials parameter has been added.

Changed in version 1.8.0: apiRequiresAuthentication, dashboardRequiresAuthentication
optional parameters added.

Setup webserver configuration. See webserver().

Parameters options (table) – A table with key: value pairs with webserver options.

Options:

• password=newPassword: string - Set the password used to access the internal webserver. Since
1.7.0 the password should be hashed and salted via the hashPassword() command.

• apiKey=newKey: string - Changes the API Key (set to an empty string do disable it). Since 1.7.0
the key should be hashed and salted via the hashPassword() command.

• customHeaders={[str]=str,...}: map of string - Allows setting custom headers and re-
moving the defaults.

• acl=newACL: string - List of IP addresses, as a string, that are allowed to open a connection to the
web server. Defaults to “127.0.0.1, ::1”.

• apiRequiresAuthentication: bool - Whether access to the API (/api endpoints) require a
valid API key. Defaults to true.

• dashboardRequiresAuthentication: bool - Whether access to the internal dashboard re-
quires a valid password. Defaults to true.

• statsRequireAuthentication: bool - Whether access to the statistics (/metrics and /jsonstat
endpoints) require a valid password or API key. Defaults to true.

• maxConcurrentConnections: int - The maximum number of concurrent web connections, or 0
which means an unlimited number. Defaults to 100.

• hashPlaintextCredentials: bool - Whether passwords and API keys provided in plaintext
should be hashed during startup, to prevent the plaintext versions from staying in memory. Doing so
increases significantly the cost of verifying credentials. Defaults to false.

registerWebHandler(path, handler)
Register a function named handler that will be called for every query sent to the exact path path. The
function will receive a WebRequest object and a WebResponse object, representing respectively the
HTTP request received and the HTTP response to send. For example a handler registered for ‘/foo’ will
receive these queries:

• GET /foo

• POST /foo

• GET /foo?param=1

But not queries for /foobar or /foo/bar.

A sample handler function could be:

154 Chapter 19. Reference Guides

dnsdist

function customHTTPHandler(req, resp)
local get = req.getvars
local headers = req.headers

if req.path ~= '/foo' or req.version ~= 11 or req.method ~= 'GET' or get[
→˓'param'] ~= '42' or headers['custom'] ~= 'foobar' then

resp.status = 500
return

end

resp.status = 200
resp.body = 'It works!'
resp.headers = { ['Foo']='Bar'}

end

registerWebHandler('/foo', customHTTPHandler)

Parameters

• path (str) – Path to register the handler for.

• handler (function) – The Lua function to register.

showWebserverConfig()
New in version 1.7.0.

Show the current webserver configuration. See webserver().

Access Control Lists

addACL(netmask)
Add a netmask to the existing ACL controlling which clients can send UDP, TCP, DNS over TLS and DNS
over HTTPS queries. See Access Control for more information.

Parameters netmask (str) – A CIDR netmask, e.g. "192.0.2.0/24". Without a sub-
netmask, only the specific address is allowed.

rmACL(netmask)
Remove a network from the existing ACL controlling which clients can send UDP, TCP, DNS over TLS
and DNS over HTTPS queries. See Access Control for more information. This function only removes
previously added entries, it does not remove subnets of entries.

Parameters netmask (str) – A CIDR netmask, e.g. "192.0.2.0/24". Without a sub-
netmask, only the specific address is allowed.

addACL("192.0.2.0/24") -- for example add subnet to the ACL
rmACL("192.0.2.10") -- does NOT work, the ACL is unchanged
rmACL("192.0.2.0/24") -- does work, the exact match is removed from the ACL

setACL(netmasks)
Remove the existing ACL and add the netmasks from the table of those allowed to send UDP, TCP, DNS
over TLS and DNS over HTTPS queries. See Access Control for more information.

Parameters netmasks ({str}) – A table of CIDR netmask, e.g. {"192.0.2.0/24",
"2001:DB8:14::/56"}. Without a subnetmask, only the specific address is allowed.

setACLFromFile(fname)
New in version 1.6.0.

Reset the ACL to the list of netmasks from the given file. See Access Control for more information.

Parameters fname (str) – The path to a file containing a list of netmasks. Empty lines or
lines starting with “#” are ignored.

19.2. Configuration Reference 155

dnsdist

setProxyProtocolACL(netmasks)
New in version 1.6.0.

Set the list of netmasks from which a Proxy Protocol header will be required, over UDP, TCP and DNS
over TLS. The default is empty. Note that a proxy protocol payload will be required from these clients,
regular DNS queries will no longer be accepted if they are not preceded by a proxy protocol payload. Be
also aware that, if setProxyProtocolApplyACLToProxiedClients() is set (default is false),
the general ACL will be applied to the source IP address as seen by dnsdist first, but also to the source IP
address provided in the Proxy Protocol header.

Parameters netmasks ({str}) – A table of CIDR netmask, e.g. {"192.0.2.0/24",
"2001:DB8:14::/56"}. Without a subnetmask, only the specific address is allowed.

setProxyProtocolApplyACLToProxiedClients(apply)
New in version 1.6.0.

Whether the general ACL should be applied to the source IP address provided in the Proxy Protocol header,
in addition to being applied to the source IP address as seen by dnsdist first.

Parameters apply (bool) – Whether it should be applied or not (default is false).

showACL()
Print a list of all netmasks allowed to send queries over UDP, TCP, DNS over TLS and DNS over HTTPS.
See Access Control for more information.

EDNS Client Subnet

setECSOverride(bool)
When useClientSubnet in newServer() is set and dnsdist adds an EDNS Client Subnet Client
option to the query, override an existing option already present in the query, if any. Note that it’s not
recommended to enable setECSOverride in front of an authoritative server responding with EDNS
Client Subnet information as mismatching data (ECS scopes) can confuse clients and lead to SERVFAIL
responses on downstream nameservers.

Parameters bool – Whether to override an existing EDNS Client Subnet option present in the
query. Defaults to false

setECSSourcePrefixV4(prefix)
When useClientSubnet in newServer() is set and dnsdist adds an EDNS Client Subnet Client
option to the query, truncate the requestors IPv4 address to prefix bits

Parameters prefix (int) – The prefix length

setECSSourcePrefixV6(prefix)
When useClientSubnet in newServer() is set and dnsdist adds an EDNS Client Subnet Client
option to the query, truncate the requestor’s IPv6 address to bits

Parameters prefix (int) – The prefix length

Ringbuffers

setRingBuffersLockRetries(num)
Deprecated since version 1.8.0: Deprecated in 1.8.0 in favor of setRingBuffersOptions() which
provides more options.

Set the number of shards to attempt to lock without blocking before giving up and simply blocking while
waiting for the next shard to be available

Parameters num (int) – The maximum number of attempts. Defaults to 5 if there is more than
one shard, 0 otherwise.

setRingBuffersOptions(options)
New in version 1.8.0.

156 Chapter 19. Reference Guides

dnsdist

Set the rings buffers configuration

Parameters options (table) – A table with key: value pairs with options.

Options:

• lockRetries: int - Set the number of shards to attempt to lock without blocking before giving up
and simply blocking while waiting for the next shard to be available. Default to 5 if there is more than
one shard, 0 otherwise

• recordQueries: boolean - Whether to record queries in the ring buffers. Default is true. Note
that grepq(), several top* commands (topClients(), topQueries(), . . .) and the Dynamic
Blocks require this to be enabled.

• recordResponses: boolean - Whether to record responses in the ring buffers. Default is true. Note
that grepq(), several top* commands (topResponses(), topSlow(), . . .) and the Dynamic
Blocks require this to be enabled.

setRingBuffersSize(num[, numberOfShards])
Changed in version 1.6.0: numberOfShards defaults to 10.

Set the capacity of the ringbuffers used for live traffic inspection to num, and the number of shards to
numberOfShards if specified. Increasing the number of entries comes at both a memory cost (around
250 MB for 1 million entries) and a CPU processing cost, so we strongly advise not going over 1 million
entries.

Parameters

• num (int) – The maximum amount of queries to keep in the ringbuffer. Defaults to
10000

• numberOfShards (int) – the number of shards to use to limit lock contention. De-
fault is 10, used to be 1 before 1.6.0

19.2.3 Servers

newServer(server_string)
newServer(server_table)

Changed in version 1.4.0: Added checkInterval, checkTimeout and rise to server_table.

Changed in version 1.5.0: Added useProxyProtocol to server_table.

Changed in version 1.6.0: Added maxInFlight to server_table.

Changed in version 1.7.0: Added addXForwardedHeaders, caStore, checkTCP, ciphers,
ciphers13, dohPath, enableRenegotiation, releaseBuffers, subjectName, tcpOnly,
tls and validateCertificates to server_table.

Changed in version 1.8.0: Added autoUpgrade, autoUpgradeDoHKey, autoUpgradeInterval,
autoUpgradeKeep, autoUpgradePool, maxConcurrentTCPConnections,
subjectAddr, lazyHealthCheckSampleSize, lazyHealthCheckMinSampleCount,
lazyHealthCheckThreshold, lazyHealthCheckFailedInterval,
lazyHealthCheckMode, lazyHealthCheckUseExponentialBackOff,
lazyHealthCheckMaxBackOff, lazyHealthCheckWhenUpgraded, healthCheckMode
and ktls to server_table.

Changed in version 1.9.0: Added MACAddr, proxyProtocolAdvertiseTLS and xskSockets to
server_table.

Parameters

• server_string (str) – A simple IP:PORT string.

• server_table (table) – A table with at least an address key

Add a new backend server. Call this function with either a string:

19.2. Configuration Reference 157

dnsdist

newServer(
"IP:PORT" -- IP and PORT of the backend server

)

or a table:

newServer({ ... })

where the elements in the table can be:

Keyword Type Description
address ip:port ip and port of the backend

server (mandatory)
id string Use a pre-defined UUID instead

of a random one

qps number Limit the number of queries per
second to number, when using
the firstAvailable policy

order number The order of this server, used
by the leastOutstanding and
firstAvailable policies

weight number The weight of this server, used
by the wrandom, whashed and
chashed policies, default: 1.
Supported values are a mini-
mum of 1, and a maximum of
2147483647.

pool string|{string} The pools this server belongs to
(unset or empty string means de-
fault pool) as a string or table of
strings

retries number The number of TCP connection
attempts to the backend, for a
given query

tcpConnectTimeout number The timeout (in seconds) of a
TCP connection attempt

tcpSendTimeout number The timeout (in seconds) of a
TCP write attempt

tcpRecvTimeout number The timeout (in seconds) of a
TCP read attempt

tcpFastOpen bool Whether to enable TCP Fast
Open

ipBindAddrNoPort bool Whether to enable
IP_BIND_ADDRESS_NO_PORT
if available, default: true

name string The name associated to this
backend, for display purpose

checkClass number Use number as QCLASS in
the health-check query, default:
DNSClass.IN

checkName string Use string as QNAME in
the health-check query, default:
"a.root-servers.net."

Continued on next page

158 Chapter 19. Reference Guides

dnsdist

Table 1 – continued from previous page
Keyword Type Description
checkType string Use string as QTYPE in

the health-check query, default:
"A"

checkFunction function Use this function to dynamically
set the QNAME, QTYPE and
QCLASS to use in the health-
check query (see Healthcheck)

checkTimeout number The timeout (in milliseconds) of
a health-check query, default:
1000 (1s)

setCD bool Set the CD (Checking Disabled)
flag in the health-check query,
default: false

maxCheckFailures number Allow number check failures
before declaring the backend
down, default: 1

checkInterval number The time in seconds between
health checks

mustResolve bool Set to true when the health check
MUST return a RCODE differ-
ent from NXDomain, ServFail
and Refused. Default is false,
meaning that every RCODE ex-
cept ServFail is considered valid

useClientSubnet bool Add the client’s IP address in
the EDNS Client Subnet option
when forwarding the query to
this backend

source string
The source address or interface to use for queries to this backend, by default this is left to the kernel’s address selection.

The following formats are
supported:

• address, e.g. "192.
0.2.2"

• interface name, e.g.
"eth0"

• address@interface,
e.g. "192.0.2.
2@eth0"

addXPF number Add the client’s IP address and
port to the query, along with
the original destination address
and port, using the experimen-
tal XPF record from draft-bellis-
dnsop-xpf and the specified op-
tion code. Default is disabled
(0). This is a deprecated feature
that will be removed in the near
future.

Continued on next page

19.2. Configuration Reference 159

mailto:address@interface
https://datatracker.ietf.org/doc/draft-bellis-dnsop-xpf/
https://datatracker.ietf.org/doc/draft-bellis-dnsop-xpf/

dnsdist

Table 1 – continued from previous page
Keyword Type Description
sockets number Number of UDP sockets (and

thus source ports) used toward
the backend server, defaults to a
single one. Note that for back-
ends which are multithreaded,
this setting will have an effect
on the number of cores that will
be used to process traffic from
dnsdist. For example you may
want to set ‘sockets’ to a number
somewhat higher than the num-
ber of worker threads configured
in the backend, particularly if
the Linux kernel is being used
to distribute traffic to multiple
threads listening on the same
socket (via reuseport). See also
setRandomizedOutgoingSockets().

disableZeroScope bool Disable the EDNS Client Sub-
net ‘zero scope’ feature, which
does a cache lookup for an an-
swer valid for all subnets (ECS
scope of 0) before adding ECS
information to the query and do-
ing the regular lookup. This re-
quires the parseECS option of
the corresponding cache to be set
to true

rise number Require number consecutive
successful checks before declar-
ing the backend up, default: 1

useProxyProtocol bool Add a proxy protocol header
to the query, passing along the
client’s IP address and port along
with the original destination ad-
dress and port. Default is dis-
abled.

reconnectOnUp bool Close and reopen the sockets
when a server transits from
Down to Up. This helps when an
interface is missing when dns-
dist is started. Default is dis-
abled.

maxInFlight number Maximum number of in-flight
queries. The default is 0, which
disables out-of-order process-
ing. It should only be enabled
if the backend does support out-
of-order processing. As of 1.6.0,
out-of-order processing needs to
be enabled on the frontend as
well, via addLocal() and/or
addTLSLocal(). Note that
out-of-order is always enabled
on DoH frontends.

Continued on next page

160 Chapter 19. Reference Guides

dnsdist

Table 1 – continued from previous page
Keyword Type Description
tcpOnly bool Always forward queries to that

backend over TCP, never over
UDP. Always enabled for TLS
backends. Default is false.

checkTCP bool Whether to do healthcheck
queries over TCP, instead of
UDP. Always enabled for DNS
over TLS backend. Default is
false.

tls string Enable DNS over TLS commu-
nications for this backend, or
DNS over HTTPS if dohPath
is set, using the TLS provider
("openssl" or "gnutls")
passed in parameter. Default is
an empty string, which means
this backend is used for plain
UDP and TCP.

caStore string Specifies the path to the CA cer-
tificate file, in PEM format, to
use to check the certificate pre-
sented by the backend. Default
is an empty string, which means
to use the system CA store. Note
that this directive is only used if
validateCertificates is
set.

ciphers string The TLS ciphers to use. The
exact format depends on the
provider used. When the
OpenSSL provider is used, ci-
phers for TLS 1.3 must be spec-
ified via ciphersTLS13.

ciphersTLS13 string The ciphers to use for TLS
1.3, when the OpenSSL provider
is used. When the GnuTLS
provider is used, ciphers ap-
plies regardless of the TLS pro-
tocol and this setting is not used.

subjectName string The subject name passed in the
SNI value of the TLS hand-
shake, and against which to val-
idate the certificate presented by
the backend. Default is empty.
If set this value supersedes any
subjectAddr one.

subjectAddr string The subject IP address passed in
the SNI value of the TLS hand-
shake, and against which to val-
idate the certificate presented by
the backend. Default is empty.

validateCertificates bool Whether the certificate presented
by the backend should be vali-
dated against the CA store (see
caStore). Default is true.

Continued on next page

19.2. Configuration Reference 161

dnsdist

Table 1 – continued from previous page
Keyword Type Description
dohPath string Enable DNS over HTTPS

communication for this back-
end, using POST queries to
the HTTP host supplied as
subjectName and the HTTP
path supplied in this parameter.

addXForwardedHeaders bool Whether to add X-Forwarded-
For, X-Forwarded-Port and X-
Forwarded-Proto headers to a
DNS over HTTPS backend.

releaseBuffers bool Whether OpenSSL should re-
lease its I/O buffers when a con-
nection goes idle, saving roughly
35 kB of memory per connec-
tion. Default to true.

enableRenegotiation bool Whether secure TLS renegotia-
tion should be enabled. Dis-
abled by default since it in-
creases the attack surface and is
seldom used for DNS.

autoUpgrade bool Whether to use the ‘Discovery
of Designated Resolvers’ mech-
anism to automatically upgrade
a Do53 backend to DoT or
DoH, depending on the priorities
present in the SVCB record re-
turned by the backend. Default
to false.

autoUpgradeInterval number If autoUpgrade is set, how
often to check if an upgrade is
available, in seconds. Default is
3600 seconds.

autoUpgradeKeep bool If autoUpgrade is set,
whether to keep the existing
Do53 backend around after an
upgrade. Default is false which
means the Do53 backend will be
replaced by the upgraded one.

autoUpgradePool string If autoUpgrade is set, in
which pool to place the newly
upgraded backend. Default is
empty which means the backend
is placed in the default pool.

autoUpgradeDoHKey number If autoUpgrade is set, the
value to use for the SVC key cor-
responding to the DoH path. De-
fault is 7.

maxConcurrentTCPConnectionsnumber Maximum number of TCP con-
nections to that backend. When
that limit is reached, queries
routed to that backend that can-
not be forwarded over an exist-
ing connection will be dropped.
Default is 0 which means no
limit.

Continued on next page

162 Chapter 19. Reference Guides

dnsdist

Table 1 – continued from previous page
Keyword Type Description
healthCheckMode string The health-check mode to

use: ‘auto’ which sends
health-check queries every
checkInterval seconds,
‘up’ which considers that the
backend is always available,
‘down’ that it is always not
available, and ‘lazy’ which
only sends health-check queries
after a configurable amount of
regular queries have failed (see
lazyHealthCheckSampleSize,
lazyHealthCheckMinSampleCount,
lazyHealthCheckThreshold,
lazyHealthCheckFailedInterval
and
lazyHealthCheckMode
for more information). Default
is ‘auto’. See Healthcheck for a
more detailed explanation.

lazyHealthCheckFailedIntervalnumber The interval, in seconds, be-
tween health-check queries in
‘lazy’ mode. Note that when
lazyHealthCheckUseExponentialBackOff
is set to true, the interval doubles
between every queries. These
queries are only sent when
a threshold of failing regular
queries has been reached, and
until the backend is available
again. Default is 30 seconds.

lazyHealthCheckMinSampleCountnumber The minimum amount of
regular queries that should
have been recorded before the
lazyHealthCheckThreshold
threshold can be applied. De-
fault is 1 which means only one
query is needed.

lazyHealthCheckMode string The ‘lazy’ health-check mode:
‘TimeoutOnly’ means that
only timeout and I/O er-
rors of regular queries
will be considered for the
lazyHealthCheckThreshold,
while ‘TimeoutOrServFail’ will
also consider ‘Server Failure’
answers. Default is ‘Time-
outOrServFail’.

Continued on next page

19.2. Configuration Reference 163

dnsdist

Table 1 – continued from previous page
Keyword Type Description
lazyHealthCheckSampleSizenumber The maximum size of

the sample of queries to
record and consider for the
lazyHealthCheckThreshold.
Default is 100, which means
the result (failure or success)
of the last 100 queries will be
considered.

lazyHealthCheckThresholdnumber The threshold, as a percent-
age, of queries that should
fail for the ‘lazy’ health-
check to be triggered when
healthCheckMode is set
to lazy. The default is 20
which means 20% of the last
lazyHealthCheckSampleSize
queries should fail for a health-
check to be triggered.

lazyHealthCheckUseExponentialBackOffbool Whether the ‘lazy’ health-check
should use an exponential back-
off instead of a fixed value, be-
tween health-check probes. The
default is false which means that
after a backend has been moved
to the ‘down’ state health-
check probes are sent every
lazyHealthCheckFailedInterval
seconds. When set
to true, the delay be-
tween each probe starts at
lazyHealthCheckFailedInterval
seconds and double be-
tween every probe, capped at
lazyHealthCheckMaxBackOff
seconds.

lazyHealthCheckMaxBackOffnumber This value, in seconds,
caps the time between two
health-check queries when
lazyHealthCheckUseExponentialBackOff
is set to true. The default is
3600 which means that at most
one hour will pass between two
health-check queries.

lazyHealthCheckWhenUpgradedbool Whether the auto-upgraded
version of this backend (see
autoUpgrade) should use the
lazy health-checking mode. De-
fault is false, which means it will
use the regular health-checking
mode.

Continued on next page

164 Chapter 19. Reference Guides

dnsdist

Table 1 – continued from previous page
Keyword Type Description
ktls bool Whether to enable the experi-

mental kernel TLS support on
Linux, if both the kernel and the
OpenSSL library support it. De-
fault is false. Currently both
DoT and DoH backend support
this option.

proxyProtocolAdvertiseTLSbool Whether to set the SSL Proxy
Protocol TLV in the proxy proto-
col payload sent to the backend
if the query was received over an
encrypted channel (DNSCrypt,
DoQ, DoH or DoT). Requires
useProxyProtocol=true.
Default is false.

xskSockets array An array of XskSocket ob-
jects to enable XSK / AF_XDP
support for this backend. See
AF_XDP / XSK for more infor-
mation.

MACAddr str When the xskSocket option is
set, this parameter can be used
to specify the destination MAC
address to use to reach the back-
end. If this options is not spec-
ified, dnsdist will try to get it
from the IP of the backend by
looking into the system’s MAC
address table, but it will fail if
the corresponding MAC address
is not present.

getServer(index)→ Server
Changed in version 1.5.0: index might be an UUID.

Get a Server

Parameters or str index (int) – The number of the server (as seen in
showServers()) or its UUID as a string.

Returns The Server object or nil

getServers()
Returns a table with all defined servers.

rmServer(index)
rmServer(uuid)
rmServer(server)

Changed in version 1.5.0: uuid selection added.

Remove a backend server.

Parameters

• or str index (int) – The number of the server (as seen in showServers()),
its UUID as a string, or a server object.

• server (Server) – A Server object as returned by e.g. getServer().

19.2. Configuration Reference 165

dnsdist

Server Functions

A server object returned by getServer() can be manipulated with these functions.

class Server
This object represents a backend server. It has several methods.

:addPool(pool)
Add this server to a pool.

Parameters pool (str) – The pool to add the server to

:getLatency()→ double
New in version 1.6.0.

Return the average latency of this server over the last 128 UDP queries, in microseconds.

Returns The number of outstanding queries

:getName()→ string
Get the name of this server.

Returns The name of the server, or an empty string if it does not have one

:getNameWithAddr()→ string
Get the name plus IP address and port of the server

Returns A string containing the server name if any plus the server address and port

:getDrops()→ int
New in version 1.6.0.

Get the number of dropped queries for this server.

Returns The number of dropped queries

:getOutstanding()→ int
Get the number of outstanding queries for this server.

Returns The number of outstanding queries

:isUp()→ bool
Returns the up status of the server

Returns true when the server is up, false otherwise

:rmPool(pool)
Removes the server from the named pool

Parameters pool (str) – The pool to remove the server from

:setAuto([status])
Set the server in the default auto state. This will enable health check queries that will set the server up
and down appropriately.

Parameters status (bool) – Set the initial status of the server to up (true) or down
(false) instead of using the last known status

:setDown()
Set the server in a DOWN state. The server will not receive queries and the health checks are disabled.

:setLazyAuto([status])
New in version 1.8.0.

Set the server in the ‘lazy’ health-check mode. This will enable health check queries, but only after
a configurable threshold of failing regular queries has been reached and only for a short time. See
Healthcheck for a more detailed explanation.

Parameters status (bool) – Set the initial status of the server to up (true) or down
(false) instead of using the last known status

166 Chapter 19. Reference Guides

dnsdist

:setQPS(limit)
Limit the queries per second for this server.

Parameters limit (int) – The maximum number of queries per second

:setUp()
Set the server in an UP state. This server will still receive queries and health checks are disabled

Apart from the functions, a Server object has these attributes:

name
The name of the server

upStatus
Whether or not this server is up or down

order
The order of the server

weight
The weight of the server

19.2.4 Pools

Servers can be part of any number of pools. Pools are automatically created when a server is added to a pool
(with newServer()), or can be manually created with getPool(). Servers that are not assigned to a specific
pool get assigned to the default pool that is always present, identified by the empty string ''.

getPool(name)→ ServerPool
Returns a ServerPool. If the pool does not exist yet, it is created.

Parameters name (string) – The name of the pool

getPoolServers(name)→ [Server]
Returns a list of Servers or nil.

Parameters name (string) – The name of the pool

getPoolNames()→ [table of names]
New in version 1.8.0.

Returns a table of all pool names

showPools()
Display the name, associated cache, server policy and associated servers for every pool.

class ServerPool
This represents the pool where zero or more servers are part of.

:getCache()→ PacketCache
Returns the PacketCache for this pool or nil.

:getECS()
Whether dnsdist will add EDNS Client Subnet information to the query before looking up
into the cache, when all servers from this pool are down. For more information see
ServerPool:setECS().

:setCache(cache)
Adds cache as the pool’s cache.

Parameters cache (PacketCache) – The new cache to add to the pool

:unsetCache()
Removes the cache from this pool.

:setECS()
Set to true if dnsdist should add EDNS Client Subnet information to the query before looking up into
the cache, when all servers from this pool are down. If at least one server is up, the preference of

19.2. Configuration Reference 167

dnsdist

the selected server is used, this parameter is only useful if all the backends in this pool are down and
have EDNS Client Subnet enabled, since the queries in the cache will have been inserted with ECS
information. Default is false.

PacketCache

A Pool can have a packet cache to answer queries directly instead of going to the backend. See Caching Responses
for a how to.

newPacketCache(maxEntries[, maxTTL=86400[, minTTL=0[, temporaryFailureTTL=60[,
staleTTL=60[, dontAge=false[, numberOfShards=1[, deferrableInsertLock=true[,
maxNegativeTTL=3600[, parseECS=false]]]]]]])→ PacketCache

Deprecated since version 1.4.0.

Creates a new PacketCache with the settings specified.

Parameters

• maxEntries (int) – The maximum number of entries in this cache

• maxTTL (int) – Cap the TTL for records to his number

• minTTL (int) – Don’t cache entries with a TTL lower than this

• temporaryFailureTTL (int) – On a SERVFAIL or REFUSED from the backend,
cache for this amount of seconds

• staleTTL (int) – When the backend servers are not reachable, and global configura-
tion setStaleCacheEntriesTTL is set appropriately, TTL that will be used when
a stale cache entry is returned

• dontAge (bool) – Don’t reduce TTLs when serving from the cache. Use this when
dnsdist fronts a cluster of authoritative servers

• numberOfShards (int) – Number of shards to divide the cache into, to reduce lock
contention

• deferrableInsertLock (bool) – Whether the cache should give up insertion if
the lock is held by another thread, or simply wait to get the lock

• maxNegativeTTL (int) – Cache a NXDomain or NoData answer from the backend
for at most this amount of seconds, even if the TTL of the SOA record is higher

• parseECS (bool) – Whether any EDNS Client Subnet option present in the query
should be extracted and stored to be able to detect hash collisions involving queries
with the same qname, qtype and qclass but a different incoming ECS value. Enabling
this option adds a parsing cost and only makes sense if at least one backend might send
different responses based on the ECS value, so it’s disabled by default

newPacketCache(maxEntries[, options])→ PacketCache
New in version 1.4.0.

Changed in version 1.6.0: cookieHashing parameter added. numberOfShards now defaults to 20.

Changed in version 1.7.0: skipOptions parameter added.

Changed in version 1.9.0: maximumEntrySize parameter added.

Creates a new PacketCache with the settings specified.

Parameters maxEntries (int) – The maximum number of entries in this cache

Options:

• deferrableInsertLock=true: bool - Whether the cache should give up insertion if the lock is
held by another thread, or simply wait to get the lock.

• dontAge=false: bool - Don’t reduce TTLs when serving from the cache. Use this when dnsdist
fronts a cluster of authoritative servers.

168 Chapter 19. Reference Guides

dnsdist

• keepStaleData=false: bool - Whether to suspend the removal of expired entries from the cache
when there is no backend available in at least one of the pools using this cache.

• maxNegativeTTL=3600: int - Cache a NXDomain or NoData answer from the backend for at
most this amount of seconds, even if the TTL of the SOA record is higher.

• maxTTL=86400: int - Cap the TTL for records to his number.

• minTTL=0: int - Don’t cache entries with a TTL lower than this.

• numberOfShards=20: int - Number of shards to divide the cache into, to reduce lock contention.
Used to be 1 (no shards) before 1.6.0, and is now 20.

• parseECS=false: bool - Whether any EDNS Client Subnet option present in the query should be
extracted and stored to be able to detect hash collisions involving queries with the same qname, qtype
and qclass but a different incoming ECS value. Enabling this option adds a parsing cost and only
makes sense if at least one backend might send different responses based on the ECS value, so it’s
disabled by default. Enabling this option is required for the ‘zero scope’ option to work

• staleTTL=60: int - When the backend servers are not reachable, and global configuration
setStaleCacheEntriesTTL is set appropriately, TTL that will be used when a stale cache entry
is returned.

• temporaryFailureTTL=60: int - On a SERVFAIL or REFUSED from the backend, cache for
this amount of seconds..

• cookieHashing=false: bool - If true, EDNS Cookie values will be hashed, resulting in separate
entries for different cookies in the packet cache. This is required if the backend is sending answers
with EDNS Cookies, otherwise a client might receive an answer with the wrong cookie.

• skipOptions={}: Extra list of EDNS option codes to skip when hashing the packet (if
cookieHashing above is false, EDNS cookie option number will be added to this list internally).

• maximumEntrySize=4096: int - The maximum size, in bytes, of a DNS packet that can be in-
serted into the packet cache. Default is 4096 bytes, which was the fixed size before 1.9.0, and is also
a hard limit for UDP responses.

class PacketCache
Represents a cache that can be part of ServerPool.

:dump(fname)
Dump a summary of the cache entries to a file.

Parameters fname (str) – The path to a file where the cache summary should be dumped.
Note that if the target file already exists, it will not be overwritten.

:expunge(n)
Remove entries from the cache, leaving at most n entries

Parameters n (int) – Number of entries to keep

:expungeByName(name[, qtype=DNSQType.ANY[, suffixMatch=false]])
Changed in version 1.6.0: name can now also be a string

Remove entries matching name and type from the cache.

Parameters

• name (DNSName) – The name to expunge

• qtype (int) – The type to expunge, can be a pre-defined DNSQType

• suffixMatch (bool) – When set to true, remove all entries under name

:getAddressListByDomain(domain)
New in version 1.8.0.

This method looks up the answers present in the cache for the supplied domain, and returns the list of
addresses present in the answer section of these answers (in A records for IPv4 addresses, and AAAA
records for IPv6 ones). The addresses are returned as a list of ComboAddress objects.

19.2. Configuration Reference 169

dnsdist

Parameters domain (DNSName) – The domain to look for

:getDomainListByAddress(addr)
New in version 1.8.0.

Return a list of domains, as DNSName objects, for which an answer is present in the cache and has
a corresponding A record (for IPv4 addresses) or AAAA record (for IPv6 addresses) in the answer
section.

Parameters addr (ComboAddress) – The address to look for

:getStats()
New in version 1.4.0.

Return the cache stats (number of entries, hits, misses, deferred lookups, deferred inserts, lookup
collisions, insert collisions and TTL too shorts) as a Lua table.

:isFull()→ bool
Return true if the cache has reached the maximum number of entries.

:printStats()
Print the cache stats (number of entries, hits, misses, deferred lookups, deferred inserts, lookup colli-
sions, insert collisions and TTL too shorts).

:purgeExpired(n)
Remove expired entries from the cache until there is at most n entries remaining in the cache.

Parameters n (int) – Number of entries to keep

:toString()→ string
Return the number of entries in the Packet Cache, and the maximum number of entries

19.2.5 Client State

Also called frontend or bind, the Client State object returned by getBind() and listed with showBinds()
represents an address and port dnsdist is listening on.

getBind(index)→ ClientState
Return a ClientState object.

Parameters index (int) – The object index

getBindCount()
New in version 1.5.0.

Return the number of binds (Do53, DNSCrypt, DoH and DoT).

ClientState functions

class ClientState
This object represents an address and port dnsdist is listening on. When reuseport is in use, several
ClientState objects can be present for the same address and port.

:attachFilter(filter)
Attach a BPF filter to this frontend.

Parameters filter (BPFFilter) – The filter to attach to this frontend

:detachFilter()
Remove the BPF filter associated to this frontend, if any.

:getEffectiveTLSProvider()→ string
New in version 1.7.0.

Return the name of the TLS provider actually used.

170 Chapter 19. Reference Guides

dnsdist

:getRequestedTLSProvider()→ string
New in version 1.7.0.

Return the name of the TLS provider requested in the configuration.

:getType()→ string
New in version 1.7.0.

Return the type of the frontend: UDP, UDP (DNSCrypt), TCP, TCP (DNSCrypt), TCP (DNS over
TLS) or TCP (DNS over HTTPS).

:toString()→ string
Return the address and port this frontend is listening on.

Returns The address and port this frontend is listening on

muted
If set to true, queries received on this frontend will be normally processed and sent to a backend
if needed, but no response will be ever be sent to the client over UDP. TCP queries are processed
normally and responses sent to the client.

19.2.6 Status, Statistics and More

dumpStats()
Print all statistics dnsdist gathers

getDOHFrontend(idx)
New in version 1.4.0.

Return the DOHFrontend object for the DNS over HTTPS bind of index idx.

getDOHFrontendCount()
New in version 1.5.0.

Return the number of DOHFrontend binds.

getDOH3Frontend(idx)
New in version 1.9.0.

Return the DOH3Frontend object for the DNS over HTTP3 bind of index idx.

getDOH3FrontendCount()
New in version 1.9.0.

Return the number of DOH3Frontend binds.

getDOQFrontend(idx)
New in version 1.9.0.

Return the DOQFrontend object for the DNS over QUIC bind of index idx.

getDOQFrontendCount()
New in version 1.9.0.

Return the number of DOQFrontend binds.

getListOfAddressesOfNetworkInterface(itf)
New in version 1.8.0.

Return the list of addresses configured on a given network interface, as strings. This function requires
support for getifaddrs, which is known to be present on FreeBSD, Linux, and OpenBSD at least.

Parameters itf (str) – The name of the network interface

getListOfNetworkInterfaces()
New in version 1.8.0.

Return the list of network interfaces configured on the system, as strings. This function requires support for
getifaddrs, which is known to be present on FreeBSD, Linux, and OpenBSD at least.

19.2. Configuration Reference 171

dnsdist

getListOfRangesOfNetworkInterface(itf)
New in version 1.8.0.

Return the list of network ranges configured on a given network interface, as strings. This function requires
support for getifaddrs, which is known to be present on FreeBSD, Linux, and OpenBSD at least.

Parameters itf (str) – The name of the network interface

getMACAddress(ip)→ str
New in version 1.8.0.

Return the link-level address (MAC) corresponding to the supplied neighbour IP address, if known by the
kernel. The link-level address is returned as a raw binary string. An empty string is returned if no matching
entry has been found. This function is only implemented on Linux.

Parameters ip (str) – The IP address, IPv4 or IPv6, to look up the corresponding link-level
address for.

getOutgoingTLSSessionCacheSize()
New in version 1.7.0.

Return the number of TLS sessions (for outgoing connections) currently cached.

getTLSContext(idx)
Return the TLSContext object for the context of index idx.

getTLSFrontend(idx)
Return the TLSFrontend object for the TLS bind of index idx.

getTLSFrontendCount()
New in version 1.5.0.

Return the number of TLSFrontend binds.

getTopCacheHitResponseRules([top])
New in version 1.6.0.

Return the cache-hit response rules that matched the most.

Parameters top (int) – How many response rules to return. Default is 10.

getTopCacheInsertedResponseRules([top])
New in version 1.8.0.

Return the cache-inserted response rules that matched the most.

Parameters top (int) – How many response rules to return. Default is 10.

getTopResponseRules([top])
New in version 1.6.0.

Return the response rules that matched the most.

Parameters top (int) – How many response rules to return. Default is 10.

getTopRules([top])
New in version 1.6.0.

Return the rules that matched the most.

Parameters top (int) – How many rules to return. Default is 10.

getTopSelfAnsweredRules([top])
New in version 1.6.0.

Return the self-answered rules that matched the most.

Parameters top (int) – How many rules to return. Default is 10.

grepq(selector[, num[, options]])

172 Chapter 19. Reference Guides

dnsdist

grepq(selectors[, num[, options]])
Changed in version 1.9.0: options optional parameter table added.

Prints the last num queries and responses matching selector or selectors. Queries and responses
are accounted in separate ring buffers, and answers from the packet cache are not stored in the response ring
buffer. Therefore, the num queries and num responses in the output may not always match up.

The selector can be:

• a netmask (e.g. ‘192.0.2.0/24’)

• a DNS name (e.g. ‘dnsdist.org’)

• a response time (e.g. ‘100ms’)

Parameters

• selector (str) – Select queries based on this property.

• selectors ({str}) – A lua table of selectors. Only queries matching all selectors
are shown

• num (int) – Show a maximum of num recent queries+responses.

• options (table) – A table with key: value pairs with options described below.

Options:

• outputFile=path: string - Write the output of the command to the supplied file, instead of the
standard output.

setStructuredLogging(enable[, options])
New in version 1.9.0.

Set whether log messages should be in a structured-logging-like format. This is turned off by default.
The resulting format looks like this (when timestamps are enabled via --log-timestamps and with
levelPrefix="prio" and timeFormat="ISO8601"):

ts="2023-11-06T12:04:58+0100" prio="Info" msg="Added downstream server 127.0.0.
→˓1:53"

And with levelPrefix="level" and timeFormat="numeric"):

ts="1699268815.133" level="Info" msg="Added downstream server 127.0.0.1:53"

Parameters

• enable (bool) – Set to true if you want to enable structured logging

• options (table) – A table with key: value pairs with options described below.

Options:

• levelPrefix=prefix: string - Set the prefix for the log level. Default is prio.

• timeFormat=format: string - Set the time format. Supported values are ISO8601 and
numeric. Default is numeric.

setVerbose(verbose)
New in version 1.8.0.

Set whether log messages issued at the verbose level should be logged. This is turned off by default.

Parameters verbose (bool) – Set to true if you want to enable verbose logging

getVerbose()
New in version 1.8.0.

Get whether log messages issued at the verbose level should be logged. This is turned off by default.

19.2. Configuration Reference 173

dnsdist

setVerboseHealthChecks(verbose)
Set whether health check errors should be logged. This is turned off by default.

Parameters verbose (bool) – Set to true if you want to enable health check errors logging

setVerboseLogDestination(dest)
New in version 1.8.0.

Set a destination file to write the ‘verbose’ log messages to, instead of sending them to syslog and/or the
standard output which is the default. Note that these messages will no longer be sent to syslog or the
standard output once this option has been set. There is no rotation or file size limit. Only use this feature
for debugging under active operator control.

Parameters dest (str) – The destination file

showBinds()
Print a list of all the current addresses and ports dnsdist is listening on, also called frontends

showDOHFrontends()
New in version 1.4.0.

Print the list of all available DNS over HTTPS frontends.

showDOH3Frontends()
New in version 1.9.0.

Print the list of all available DNS over HTTP/3 frontends.

showDOHResponseCodes()
New in version 1.4.0.

Print the HTTP response codes statistics for all available DNS over HTTPS frontends.

showDOQFrontends()
New in version 1.9.0.

Print the list of all available DNS over QUIC frontends.

showResponseLatency()
Show a plot of the response time latency distribution

showServers([options])
Changed in version 1.4.0: options optional parameter added

This function shows all backend servers currently configured and some statistics. These statics have the
following fields:

• # - The number of the server, can be used as the argument for getServer()

• UUID - The UUID of the backend. Can be set with the id option of newServer()

• Address - The IP address and port of the server

• State - The current state of the server

• Qps - Current number of queries per second

• Qlim - Configured maximum number of queries per second

• Ord - The order number of the server

• Wt - The weight of the server

• Queries - Total amount of queries sent to this server

• Drops - Number of queries that were dropped by this server

• Drate - Number of queries dropped per second by this server

• Lat - The latency of this server in milliseconds

• Pools - The pools this server belongs to

174 Chapter 19. Reference Guides

dnsdist

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

showTCPStats()
Show some statistics regarding TCP

showTLSContexts()
Print the list of all available DNS over TLS contexts.

showTLSErrorCounters()
New in version 1.4.0.

Display metrics about TLS handshake failures.

showVersion()
Print the version of dnsdist

topBandwidth([num])
Print the top num clients that consume the most bandwidth.

Parameters num (int) – Number to show, defaults to 10.

topCacheHitResponseRules([top[, options]])
New in version 1.6.0.

This function shows the cache-hit response rules that matched the most.

Parameters

• top (int) – How many rules to show.

• options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

topCacheInsertedResponseRules([top[, options]])
New in version 1.8.0.

This function shows the cache-inserted response rules that matched the most.

Parameters

• top (int) – How many rules to show.

• options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

topClients([num])
Print the top num clients sending the most queries over length of ringbuffer

Parameters num (int) – Number to show, defaults to 10.

topQueries([num[, labels]])
Print the num most popular QNAMEs from queries. Optionally grouped by the rightmost labels DNS
labels.

Parameters

• num (int) – Number to show, defaults to 10

• label (int) – Number of labels to cut down to

topResponses([num[, rcode[, labels]]])
Print the num most seen responses with an RCODE of rcode. Optionally grouped by the rightmost
labels DNS labels.

19.2. Configuration Reference 175

dnsdist

Parameters

• num (int) – Number to show, defaults to 10

• rcode (int) – Response code, defaults to 0 (No Error)

• label (int) – Number of labels to cut down to

topResponseRules([top[, options]])
New in version 1.6.0.

This function shows the response rules that matched the most.

Parameters

• top (int) – How many rules to show.

• options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

topRules([top[, options]])
New in version 1.6.0.

This function shows the rules that matched the most.

Parameters

• top (int) – How many rules to show.

• options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

topSelfAnsweredResponseRules([top[, options]])
New in version 1.6.0.

This function shows the self-answered response rules that matched the most.

Parameters

• top (int) – How many rules to show.

• options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

topSlow([num[, limit[, labels]]])
Print the num slowest queries that are slower than limitmilliseconds. Optionally grouped by the rightmost
labels DNS labels.

Parameters

• num (int) – Number to show, defaults to 10

• limit (int) – Show queries slower than this amount of milliseconds, defaults to 2000

• label (int) – Number of labels to cut down to

19.2.7 Dynamic Blocks

addDynamicBlock(address, message[, action[, seconds[, clientIPMask[, clientIPPortMask]]]])
New in version 1.9.0.

Manually block an IP address or range with message for (optionally) a number of seconds. The default
number of seconds to block for is 10.

176 Chapter 19. Reference Guides

dnsdist

Parameters

• address – A ComboAddress or string representing an IPv4 or IPv6 address

• message (string) – The message to show next to the blocks

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to DNSAction.None, meaning the one set with setDynBlocksAction()
is used)

• seconds (int) – The number of seconds this block to expire

• clientIPMask (int) – The network mask to apply to the address. Default is 32 for
IPv4, 128 for IPv6.

• clientIPPortMask (int) – The port mask to use to specify a range of ports to
match, when the clients are behind a CG-NAT.

Please see the documentation for setDynBlocksAction() to confirm which actions are supported by
the action paramater.

addDynBlocks(addresses, message[, seconds=10[, action]])
Block a set of addresses with message for (optionally) a number of seconds. The default number of
seconds to block for is 10. Since 1.3.0, the use of a DynBlockRulesGroup is a much more efficient way of
doing the same thing.

Parameters

• addresses – set of Addresses as returned by an exceed function

• message (string) – The message to show next to the blocks

• seconds (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to DNSAction.None, meaning the one set with setDynBlocksAction()
is used)

Please see the documentation for setDynBlocksAction() to confirm which actions are supported by
the action paramater.

clearDynBlocks()
Remove all current dynamic blocks.

getDynamicBlocks()
New in version 1.9.0.

Return an associative table of active network-based dynamic blocks. The keys are the network IP or range
that are blocked, the value are DynBlock objects.

getDynamicBlocksSMT()
New in version 1.9.0.

Return an associative table of active domain-based (Suffix Match Tree or SMT) dynamic blocks. The keys
are the domains that are blocked, the values are DynBlock objects.

showDynBlocks()
List all dynamic blocks in effect.

setDynBlocksAction(action)
Set which action is performed when a query is blocked. Only DNSAction.Drop (the default),
DNSAction.NoOp, DNSAction.NXDomain, DNSAction.Refused, DNSAction.Truncate and DNSAc-
tion.NoRecurse are supported.

setDynBlocksPurgeInterval(sec)
New in version 1.6.0.

Set at which interval, in seconds, the expired dynamic blocks entries will be effectively removed from the
tree. Entries are not applied anymore as soon as they expire, but they remain in the tree for a while for

19.2. Configuration Reference 177

dnsdist

performance reasons. Removing them makes the addition of new entries faster and frees up the memory
they use. Setting this value to 0 disable the purging mechanism, so entries will remain in the tree.

Parameters sec (int) – The interval between two runs of the cleaning algorithm, in seconds.
Default is 60 (1 minute), 0 means disabled.

class DynBlock
New in version 1.9.0.

Represent the current state of a dynamic block.

action
The action of this block, as an integer representing a DNSAction.

blocks
The number of queries blocked.

bpf
Whether this block is using eBPF, as a boolean.

domain
The domain that is blocked, as a string, for Suffix Match Tree blocks.

reason
The reason why this block was inserted, as a string.

until
The time (in seconds since Epoch) at which the block will expire.

warning
Whether this block is only a warning one (true) or is really enforced (false).

Getting addresses that exceeded parameters

exceedServFails(rate, seconds)
Get set of addresses that exceed rate servfails/s over seconds seconds

Parameters

• rate (int) – Number of Servfails per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

exceedNXDOMAINs(rate, seconds)
get set of addresses that exceed rate NXDOMAIN/s over seconds seconds

Parameters

• rate (int) – Number of NXDOMAIN per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

exceedRespByterate(rate, seconds)
get set of addresses that exceeded rate bytes/s answers over seconds seconds

Parameters

• rate (int) – Number of bytes per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

exceedQRate(rate, seconds)
Get set of address that exceed rate queries/s over seconds seconds

Parameters

• rate (int) – Number of queries per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

178 Chapter 19. Reference Guides

dnsdist

exceedQTypeRate(type, rate, seconds)
Get set of address that exceed rate queries/s for queries of QType type over seconds seconds

Parameters

• type (int) – QType

• rate (int) – Number of QType queries per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

DynBlockRulesGroup

Instead of using several exceed*() lines, dnsdist 1.3.0 introduced a new DynBlockRulesGroup object which can be
used to group dynamic block rules.

See Dynamic Rule Generation for more information about the case where using a DynBlockRulesGroup might be
faster than the existing rules.

dynBlockRulesGroup()→ DynBlockRulesGroup
Creates a new DynBlockRulesGroup object.

class DynBlockRulesGroup
Represents a group of dynamic block rules.

:setCacheMissRatio(ratio, seconds, reason, blockingTime, minimumNumberOfResponses,
minimumGlobalCacheHitRatio[, action[, warningRate]])

New in version 1.9.0.

Adds a rate-limiting rule for the ratio of cache-misses responses over the total number of responses for
a given client. A minimum global cache-hit ratio has to specified to prevent false-positive when the
cache is empty.

Parameters

• ratio (float) – Ratio of cache-miss responses per second over the total number of
responses for this client to exceed

• seconds (int) – Number of seconds the ratio has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• minimumNumberOfResponses (int) – How many total responses is required for
this rule to apply

• minimumGlobalCacheHitRatio (float) – The minimum global cache-hit ra-
tio (over all pools, so cache-hits / (cache-hits + cache-misses)) for
that rule to be applied.

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• warningRatio (float) – If set to a non-zero value, the ratio above which a warn-
ing message will be issued and a no-op block inserted

:setMasks(v4, v6, port)
New in version 1.7.0.

Set the number of bits to keep in the IP address when inserting a block. The default is 32 for IPv4
and 128 for IPv6, meaning that only the exact address is blocked, but in some scenarios it might make
sense to block a whole /64 IPv6 range instead of a single address, for example. It is also possible to
take the IPv4 UDP and TCP ports into account, for CGNAT deployments, by setting the number of
bits of the port to consider. For example passing 2 as the last parameter, which only makes sense if
the previous parameters are respectively 32 and 128, will split a given IP address into four port ranges:
0-16383, 16384-32767, 32768-49151 and 49152-65535.

19.2. Configuration Reference 179

dnsdist

Parameters

• v4 (int) – Number of bits to keep for IPv4 addresses. Default is 32

• v6 (int) – Number of bits to keep for IPv6 addresses. Default is 128

• port (int) – Number of bits of port to consider over IPv4. Default is 0 meaning that
the port is not taken into account

:setQueryRate(rate, seconds, reason, blockingTime[, action[, warningRate]])
Adds a query rate-limiting rule, equivalent to: ` addDynBlocks(exceedQRate(rate,
seconds), reason, blockingTime, action) `

Parameters

• rate (int) – Number of queries per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• warningRate (int) – If set to a non-zero value, the rate above which a warning
message will be issued and a no-op block inserted

:setNewBlockInsertedHook(hook)
New in version 1.9.0.

Set a Lua function that will be called everytime a new dynamic block is inserted. The function receives:

• an integer whose value is 0 if the block is Netmask-based one (Client IP or range) and 1 instead
(Domain name suffix)

• the key (Client IP/range or domain suffix) as a string

• the reason of the block as a string

• the action of the block as an integer

• the duration of the block in seconds

• whether this is a warning block (true) or not (false)

:setRCodeRate(rcode, rate, seconds, reason, blockingTime[, action[, warningRate]])

Note: Cache hits are inserted into the in-memory ring buffers since 1.8.0, so they are now considered
when computing the rcode rate.

Adds a rate-limiting rule for responses of code rcode, equivalent to: `

addDynBlocks(exceedServfails(rcode, rate, seconds), reason,
blockingTime, action) `

Parameters

• rcode (int) – The response code

• rate (int) – Number of responses per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

180 Chapter 19. Reference Guides

dnsdist

• warningRate (int) – If set to a non-zero value, the rate above which a warning
message will be issued and a no-op block inserted

:setRCodeRatio(rcode, ratio, seconds, reason, blockingTime, minimumNumberOfResponses[,
action[, warningRate]])

New in version 1.5.0.

Note: Cache hits are inserted into the in-memory ring buffers since 1.8.0, so they are now considered
when computing the rcode ratio.

Adds a rate-limiting rule for the ratio of responses of code rcode over the total number of responses
for a given client.

Parameters

• rcode (int) – The response code

• ratio (float) – Ratio of responses per second of the given rcode over the total
number of responses for this client to exceed

• seconds (int) – Number of seconds the ratio has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• minimumNumberOfResponses (int) – How many total responses is required for
this rule to apply

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• warningRatio (float) – If set to a non-zero value, the ratio above which a warn-
ing message will be issued and a no-op block inserted

:setQTypeRate(qtype, rate, seconds, reason, blockingTime[, action[, warningRate]])
Adds a rate-limiting rule for queries of type qtype, equivalent to: `

addDynBlocks(exceedQTypeRate(type, rate, seconds), reason,
blockingTime, action) `

Parameters

• qtype (int) – The qtype

• rate (int) – Number of queries per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• warningRate (int) – If set to a non-zero value, the rate above which a warning
message will be issued and a no-op block inserted

:setResponseByteRate(rate, seconds, reason, blockingTime[, action[, warningRate]])

Note: Cache hits are inserted into the in-memory ring buffers since 1.8.0, so they are now considered
when computing the bandwidth rate.

19.2. Configuration Reference 181

dnsdist

Adds a bandwidth rate-limiting rule for responses, equivalent to: `

addDynBlocks(exceedRespByterate(rate, seconds), reason,
blockingTime, action) `

Parameters

• rate (int) – Number of bytes per second to exceed

• seconds (int) – Number of seconds the rate has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• warningRate (int) – If set to a non-zero value, the rate above which a warning
message will be issued and a no-op block inserted

:setSuffixMatchRule(seconds, reason, blockingTime, action, visitor)
New in version 1.4.0.

Changed in version 1.7.0: This visitor function can now optionally return an additional string which
will be set as the reason for the dynamic block.

Changed in version 1.9.0: This visitor function can now optionally return an additional integer which
will be set as the action for the dynamic block.

Set a Lua visitor function that will be called for each label of every domain seen in queries
and responses. The function receives a StatNode object representing the stats of the parent, a
StatNodeStats one with the stats of the current label and a second StatNodeStats with the
stats of the current node plus all its children. Note that this function will not be called if a FFI ver-
sion has been set using DynBlockRulesGroup:setSuffixMatchRuleFFI() If the function
returns true, the current suffix will be added to the block list, meaning that the exact name and all its
sub-domains will be blocked according to the seconds, reason, blockingTime and action parameters.
Since 1.7.0, the function can return an additional string, in addition to the boolean, which will be set
as the reason for the dynamic block. Selected domains can be excluded from this processing using
the DynBlockRulesGroup:excludeDomains() method.

This replaces the existing addDynBlockSMT() function.

Parameters

• seconds (int) – Number of seconds the rate has been exceeded

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• visitor (function) – The Lua function to call.

:setSuffixMatchRuleFFI(seconds, reason, blockingTime, action, visitor)
New in version 1.4.0.

Set a Lua FFI visitor function that will be called for each label of every domain seen in queries and
responses. The function receives a dnsdist_ffi_stat_node_t object containing the stats of the parent,
a second one with the stats of the current label and one with the stats of the current node plus all
its children. If the function returns true, the current suffix will be added to the block list, meaning
that the exact name and all its sub-domains will be blocked according to the seconds, reason, block-
ingTime and action parameters. Selected domains can be excluded from this processing using the
DynBlockRulesGroup:excludeDomains() method.

Parameters

• seconds (int) – Number of seconds the rate has been exceeded

182 Chapter 19. Reference Guides

dnsdist

• reason (string) – The message to show next to the blocks

• blockingTime (int) – The number of seconds this block to expire

• action (int) – The action to take when the dynamic block matches, see DNSAction.
(default to the one set with setDynBlocksAction())

• visitor (function) – The Lua FFI function to call.

:apply()
Walk the in-memory query and response ring buffers and apply the configured rate-limiting rules,
adding dynamic blocks when the limits have been exceeded.

:setQuiet(quiet)
New in version 1.4.0.

Set whether newly blocked clients or domains should be logged.

Parameters quiet (bool) – True means that insertions will not be logged, false that they
will. Default is false.

:excludeDomains(domains)
New in version 1.4.0.

Exclude this domain, or list of domains, meaning that no dynamic block will ever
be inserted for this domain via DynBlockRulesGroup:setSuffixMatchRule() or
DynBlockRulesGroup:setSuffixMatchRuleFFI(). Default to empty, meaning rules are
applied to all domains.

Parameters domain (str) – A domain, or list of domains, as strings, like for example
“powerdns.com”

:excludeRange(netmasks)
Changed in version 1.6.0: This method now accepts a NetmaskGroup object.

Exclude this range, or list of ranges, meaning that no dynamic block will ever be inserted for clients in
that range. Default to empty, meaning rules are applied to all ranges. When used in combination with
DynBlockRulesGroup:includeRange(), the more specific entry wins.

Parameters netmasks (list) – A NetmaskGroup object, or a netmask or list of net-
masks as strings, like for example “192.0.2.1/24”

:includeRange(netmasks)
Changed in version 1.6.0: This method now accepts a NetmaskGroup object.

Include this range, or list of ranges, meaning that rules will be applied to this range. When used in
combination with DynBlockRulesGroup:excludeRange(), the more specific entry wins.

Parameters netmasks (list) – A NetmaskGroup object, or a netmask or list of net-
masks as strings, like for example “192.0.2.1/24”

:removeRange(netmasks)
New in version 1.8.3.

Remove a previously included or excluded range. The range should be an exact match of the existing
entry to remove.

Parameters netmasks (list) – A NetmaskGroup object, or a netmask or list of net-
masks as strings, like for example “192.0.2.1/24”

:toString()
Return a string describing the rules and range exclusions of this DynBlockRulesGroup.

StatNode

class StatNode
Represent a given node, for the visitor functions used with DynBlockRulesGroup:setSuffixMatchRule()

19.2. Configuration Reference 183

dnsdist

and DynBlockRulesGroup:setSuffixMatchRuleFFI().

fullname
The complete name of that node, ie ‘www.powerdns.com.’.

labelsCount
The number of labels in that node, for example 3 for ‘www.powerdns.com.’.

:numChildren()
The number of children of that node.

class StatNodeStats
Represent the metrics for a given node, for the visitor func-
tions used with DynBlockRulesGroup:setSuffixMatchRule() and
DynBlockRulesGroup:setSuffixMatchRuleFFI().

bytes
The number of bytes for all responses returned for that node.

drops
The number of drops for that node.

noerrors
The number of No Error answers returned for that node.

hits
New in version 1.8.0.

The number of cache hits for that node.

nxdomains
The number of NXDomain answers returned for that node.

queries
The number of queries for that node.

servfails
The number of Server Failure answers returned for that node.

SuffixMatchNode

A SuffixMatchNode can be used to quickly check whether a given name belongs to a set or not. This is achieved
using an efficient tree structure based on DNS labels, making lookups cheap. Be careful that Suffix Node match-
ing will match for any sub-domain, regardless of the depth, under the name added to the set. For example, if
‘example.com.’ is added to the set, ‘www.example.com.’ and ‘sub.www.example.com.’ will match as well. If you
are looking for exact name matching, your might want to consider using a DNSNameSet instead.

newSuffixMatchNode()
Creates a new SuffixMatchNode.

class SuffixMatchNode
Represent a set of DNS suffixes for quick matching.

:add(name)
Changed in version 1.4.0: This method now accepts strings, lists of DNSNames and lists of strings.

Add a suffix to the current set.

Parameters

• name (table) – The suffix to add to the set.

• name – The suffix to add to the set.

• name – The suffixes to add to the set. Elements of the table should be of the same
type, either DNSName or string.

184 Chapter 19. Reference Guides

dnsdist

:check(name)→ bool
Return true if the given name is a sub-domain of one of those in the set, and false otherwise.

Parameters name (DNSName) – The name to test against the set.

:getBestMatch(name)→ DNSName
New in version 1.8.0.

Returns the best match for the supplied name, or nil if there was no match.

Parameters name (DNSName) – The name to look up.

:remove(name)
New in version 1.5.0.

Remove a suffix from the current set.

Parameters

• name (table) – The suffix to remove from the set.

• name – The suffix to remove from the set.

• name – The suffixes to remove from the set. Elements of the table should be of the
same type, either DNSName or string.

19.2.8 Outgoing TLS tickets cache management

Since 1.7, dnsdist supports securing the connection toward backends using DNS over TLS. For these connections,
it keeps a cache of TLS tickets to be able to resume a TLS session quickly. By default that cache contains up to
20 TLS tickets per-backend, is cleaned up every 60s, and TLS tickets expire if they have not been used after 600
seconds. These values can be set at configuration time via:

setOutgoingTLSSessionsCacheMaxTicketsPerBackend(num)
Set the maximum number of TLS tickets to keep, per-backend, to be able to quickly resume outgoing TLS
connections to a backend. Keeping more tickets might provide a better TLS session resumption rate if there
is a sudden peak of outgoing connections, at the cost of using a bit more memory.

Parameters num (int) – The number of TLS tickets to keep, per-backend. The default is 20.

setOutgoingTLSSessionsCacheCleanupDelay(delay)
Set the number of seconds between two scans of the TLS sessions cache, removing expired tickets and
freeing up memory. Decreasing that value will lead to more scans, freeing up memory more quickly but
using a bit more CPU doing so.

Parameters delay (int) – The number of seconds between two scans of the cache. The
default is 60.

setOutgoingTLSSessionsCacheMaxTicketValidity(validity)
Set the number of seconds that a given TLS ticket can be kept inactive in the TLS sessions cache. After that
delay the ticket will be removed during the next cleanup of the cache. Increasing that value might increase
the TLS resumption rate if new connections are not often created, but it might also lead to trying to reuse a
ticket that the server will consider too old and refuse.

Parameters validity (int) – The number of seconds a ticket is considered valid. The
default is 600, which matches the default lifetime of TLS tickets set by OpenSSL.

19.2.9 Other functions

addMaintenanceCallback(callback)
New in version 1.10.0.

Register a Lua function to be called as part of the maintenance hook, which is executed roughly every
second. The function should not block for a long period of time, as it would otherwise delay the execution
of the other functions registered for this hook, as well as the execution of the maintenance() function.

19.2. Configuration Reference 185

dnsdist

Parameters callback (function) – The function to be called. It takes no parameter and
returns no value.

function myCallback(hostname, ips)
print('called')

end
addMaintenanceCallback(myCallback)

getAddressInfo(hostname, callback)
New in version 1.9.0.

Asynchronously resolve, via the system resolver (using getaddrinfo()), the supplied hostname to
IPv4 and IPv6 addresses (if configured on the host) before invoking the supplied callback function with
the hostname and a list of IPv4 and IPv6 addresses as ComboAddress. For example, to get the addresses
of Quad9’s resolver and dynamically add them as backends:

function resolveCB(hostname, ips)
for _, ip in ipairs(ips) do

newServer(ip:toString())
end

end
getAddressInfo('dns.quad9.net.', resolveCB)

Parameters

• hostname (str) – The hostname to resolve.

• callback (function) – The function to invoke when the name has been resolved.

getCurrentTime -> timespec
New in version 1.8.0.

Return the current time, in whole seconds and nanoseconds since epoch.

Returns A timespec object, see timespec

getResolvers(path)
New in version 1.8.0.

This function can be used to get a Lua table of name servers from a file in the resolv.conf format.

Parameters path (str) – The path to the file, usually /etc/resolv.conf

getStatisticsCounters()
This function returns a Lua associative array of metrics, with the metric name as key and the current value
of the counter as value.

maintenance()
If this function exists, it is called every second to do regular tasks. This can be used for e.g. Dynamic Blocks.
See also addMaintenanceCallback().

threadmessage(cmd, dict)
New in version 1.8.0.

This function, if it exists, is called when a separate thread (made with newThread()) calls
submitToMainThread().

newThread(code)
New in version 1.8.0.

Spawns a separate thread running the supplied code. Code is supplied as a string, not as a function object.
Note that this function does nothing in ‘client’ or ‘config-check’ modes.

submitToMainThread(cmd, dict)
New in version 1.8.0.

186 Chapter 19. Reference Guides

dnsdist

Must be called from a separate thread (made with newThread()), submits data to the main thread
by calling threadmessage() in it. If no threadmessage receiver is present in the main thread,
submitToMainThread logs an error but returns normally.

The cmd argument is a string. The dict argument is a Lua table.

setAllowEmptyResponse()
New in version 1.4.0.

Set to true (defaults to false) to allow empty responses (qdcount=0) with a NoError or NXDomain rcode
(default) from backends. dnsdist drops these responses by default because it can’t match them against the
initial query since they don’t contain the qname, qtype and qclass, and therefore the risk of collision is much
higher than with regular responses.

setDropEmptyQueries(drop)
New in version 1.6.0.

Set to true (defaults to false) to drop empty queries (qdcount=0) right away, instead of answering with a
NotImp rcode. dnsdist used to drop these queries by default because most rules and existing Lua code
expects a query to have a qname, qtype and qclass. However RFC 7873 uses these queries to request a
server cookie, and RFC 8906 as a conformance test, so answering these queries with NotImp is much better
than not answering at all.

Parameters drop (bool) – Whether to drop these queries (defaults to false)

setProxyProtocolMaximumPayloadSize(size)
New in version 1.6.0.

Set the maximum size of a Proxy Protocol payload that dnsdist is willing to accept, in bytes. The default is
512, which is more than enough except for very large TLV data. This setting can’t be set to a value lower
than 16 since it would deny of Proxy Protocol headers.

Parameters size (int) – The maximum size in bytes (default is 512)

setTCPFastOpenKey(key)
New in version 1.8.0.

Set the supplied TCP Fast Open key on all frontends. This can for example be used to allow all dnsdist
instances in an anycast cluster to use the same TCP Fast Open key, reducing round-trips.

Parameters key (string) – The format of the key can be found in /proc/sys/net/
ipv4/tcp_fastopen_key

makeIPCipherKey(password)→ string
New in version 1.4.0.

Hashes the password to generate a 16-byte key that can be used to pseudonymize IP addresses with IP
cipher.

generateOCSPResponse(pathToServerCertificate, pathToCACertificate, pathToCAPrivateKey, out-
putFile, numberOfDaysOfValidity, numberOfMinutesOfValidity)

New in version 1.4.0.

When a local PKI is used to issue the certificate, or for testing purposes, generateOCSPResponse()
can be used to generate an OCSP response file for a certificate, using the certificate and private key of
the certification authority that signed that certificate. The resulting file can be directly used with the
addDOHLocal() or the addTLSLocal() functions.

Parameters

• pathToServerCertificate (string) – Path to a file containing the certificate
used by the server.

• pathToCACertificate (string) – Path to a file containing the certificate of the
certification authority that was used to sign the server certificate.

• pathToCAPrivateKey (string) – Path to a file containing the private key corre-
sponding to the certification authority certificate.

19.2. Configuration Reference 187

https://tools.ietf.org/html/rfc7873.html
https://tools.ietf.org/html/rfc8906.html

dnsdist

• outputFile (string) – Path to a file where the resulting OCSP response will be
written to.

• numberOfDaysOfValidity (int) – Number of days this OCSP response should
be valid.

• numberOfMinutesOfValidity (int) – Number of minutes this OCSP response
should be valid, in addition to the number of days.

getRingEntries()
New in version 1.8.0.

Return a list of all the entries, queries and responses alike, that are present in the in-memory ring buffers, as
LuaRingEntry objects.

loadTLSEngine(engineName[, defaultString])
New in version 1.8.0.

Load the OpenSSL engine named engineName, setting the engine default string to defaultString
if supplied. Engines can be used to accelerate cryptographic operations, like for example Intel QAT. At
the moment up to a maximum of 32 loaded engines are supported, and that support is experimental. Some
engines might actually degrade performance unless the TLS asynchronous mode of OpenSSL is enabled.
To enable it see the tlsAsyncMode parameter on addTLSLocal() and addDOHLocal().

Parameters

• engineName (string) – The name of the engine to load.

• defaultString (string) – The default string to pass to the engine. The
exact value depends on the engine but represents the algorithms to regis-
ter with the engine, as a list of comma-separated keywords. For example
“RSA,EC,DSA,DH,PKEY,PKEY_CRYPTO,PKEY_ASN1”.

loadTLSProvider(providerName)
New in version 1.8.0.

Load the OpenSSL provider named providerName. Providers can be used to accelerate cryptographic
operations, like for example Intel QAT. At the moment up to a maximum of 32 loaded providers are sup-
ported, and that support is experimental. Note that loadTLSProvider() is only available when build-
ing against OpenSSL version >= 3.0 and with the –enable-tls-provider configure flag on. In other cases,
loadTLSEngine() should be used instead. Some providers might actually degrade performance unless
the TLS asynchronous mode of OpenSSL is enabled. To enable it see the tlsAsyncMode parameter on
addTLSLocal() and addDOHLocal().

Parameters providerName (string) – The name of the provider to load.

newTLSCertificate(pathToCert[, options])
New in version 1.8.0.

Creates a TLSCertificate object suited to be used with functions like addDOHLocal(),
addDOH3Local(), addDOQLocal() and addTLSLocal() for TLS certificate configuration.

PKCS12 files are only supported by the openssl provider, password-protected or not.

Parameters

• pathToCert (string) – Path to a file containing the certificate or a PKCS12 file
containing both a certificate and a key.

• options (table) – A table with key: value pairs with additional options.

Options:

• key="path/to/key": string - Path to a file containing the key corresponding to the certificate.

• password="pass": string - Password protecting the PKCS12 file if appropriate.

188 Chapter 19. Reference Guides

dnsdist

newTLSCertificate("path/to/pub.crt", {key="path/to/private.pem"})
newTLSCertificate("path/to/domain.p12", {password="passphrase"}) -- use a
→˓password protected ``PKCS12`` file

DOHFrontend

class DOHFrontend
New in version 1.4.0.

This object represents an address and port dnsdist is listening on for DNS over HTTPS queries.

:getAddressAndPort()→ string
New in version 1.7.1.

Return the address and port this frontend is listening on.

:loadNewCertificatesAndKeys(certFile(s), keyFile(s))
New in version 1.6.1.

Changed in version 1.8.0: certFile now accepts a TLSCertificate object or a list of such objects
(see newTLSCertificate())

Parameters

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, a list of
paths to such files, or a TLSCertificate object.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones. Ignored
if certFile contains TLSCertificate objects.

:loadTicketsKeys(ticketsKeysFile)

Load new tickets keys from the selected file, replacing the existing ones. These keys should
be rotated often and never written to persistent storage to preserve forward secrecy. The
default is to generate a random key. dnsdist supports several tickets keys to be able to decrypt
existing sessions after the rotation. See TLS Sessions Management for more information.

Parameters ticketsKeysFile (str) – The path to a file from where TLS tickets keys
should be loaded.

:reloadCertificates()
Reload the current TLS certificate and key pairs.

:rotateTicketsKey()
Replace the current TLS tickets key by a new random one.

:setResponsesMap(rules)
Set a list of HTTP response rules allowing to intercept HTTP queries very early, before the DNS
payload has been processed, and send custom responses including error pages, redirects and static
content.

Parameters of DOHResponseMapEntry objects rules (list) – A list of
DOHResponseMapEntry objects, obtained with newDOHResponseMapEntry().

newDOHResponseMapEntry(regex, status, content[, headers])→ DOHResponseMapEntry
New in version 1.4.0.

Return a DOHResponseMapEntry that can be used with DOHFrontend:setResponsesMap(). Every
query whose path is listed in the urls parameter to addDOHLocal() and matches the regular expression
supplied in regex will be immediately answered with a HTTP response. The status of the HTTP response
will be the one supplied by status, and the content set to the one supplied by content, except if the
status is a redirection (3xx) in which case the content is expected to be the URL to redirect to.

Parameters

19.2. Configuration Reference 189

dnsdist

• regex (str) – A regular expression to match the path against.

• status (int) – The HTTP code to answer with.

• content (str) – The content of the HTTP response, or a URL if the status is a
redirection (3xx).

• of headers (table) – The custom headers to set for the HTTP response, if any.
The default is to use the value of the customResponseHeaders parameter passed
to addDOHLocal().

DOH3Frontend

class DOH3Frontend
New in version 1.9.0.

This object represents an address and port dnsdist is listening on for DNS over HTTP3 queries.

:reloadCertificates()
Reload the current TLS certificate and key pairs.

DOQFrontend

class DOQFrontend
New in version 1.9.0.

This object represents an address and port dnsdist is listening on for DNS over QUIC queries.

:reloadCertificates()
Reload the current TLS certificate and key pairs.

LuaRingEntry

class LuaRingEntry
New in version 1.8.0.

This object represents an entry from the in-memory ring buffers, query or response.

backend
If this entry is a response, the backend from which it has been received as a ComboAddress.

LuaRingEntry.dnsheader

The DNSHeader (dh) object of this entry.

isResponse
Whether this entry is a response (true) or a request (false).

macAddress
The MAC address of the client as a string, if available.

protocol
The protocol (Do53 UDP, Do53 TCP, DoT, DoH, . . .) over which this entry was received, as a string.

qname
The qname of this entry as a DNSName objects.

qtype
The qtype of this entry as an integer.

requestor
The requestor (client IP) of this entry as a ComboAddress.

size
The size of the DNS payload of that entry, in bytes.

190 Chapter 19. Reference Guides

dnsdist

LuaRingEntry.usec
The response time (elapsed time between the request was received and the response sent) in milliseconds.

LuaRingEntry.when
The timestamp of this entry, as a timespec.

timespec

class timespec
New in version 1.8.0.

This object represents a timestamp in the timespec format.

tv_sec
Number of seconds elapsed since Unix epoch.

tv_nsec
Number of remaining nanoseconds elapsed since Unix epoch after subtracting the seconds from the
tv_sec field.

TLSCertificate

class TLSCertificate
This object represents a TLS certificate. It can be created with newTLSCertificate() and used with
addDOHLocal(), addDOH3Local(), addDOQLocal() and addTLSLocal() for TLS certificate
configuration. It is mostly useful to deal with password-protected PKCS12 certificates.

TLSContext

class TLSContext
This object represents an address and port dnsdist is listening on for DNS over TLS queries.

:loadTicketsKeys(ticketsKeysFile)

Load new tickets keys from the selected file, replacing the existing ones. These keys should
be rotated often and never written to persistent storage to preserve forward secrecy. The
default is to generate a random key. The OpenSSL provider supports several tickets keys
to be able to decrypt existing sessions after the rotation, while the GnuTLS provider only
supports one key. See TLS Sessions Management for more information.

Parameters ticketsKeysFile (str) – The path to a file from where TLS tickets keys
should be loaded.

:rotateTicketsKey()
Replace the current TLS tickets key by a new random one.

TLSFrontend

class TLSFrontend
This object represents the configuration of a listening frontend for DNS over TLS queries. To each frontend
is associated a TLSContext.

:getAddressAndPort()→ string
New in version 1.7.1.

Return the address and port this frontend is listening on.

19.2. Configuration Reference 191

dnsdist

:loadNewCertificatesAndKeys(certFile(s), keyFile(s))
Create and switch to a new TLS context using the same options than were passed to the corresponding
addTLSLocal() directive, but loading new certificates and keys from the selected files, replacing the
existing ones.

Parameters

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, or a list
of paths to such files.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones.

:loadTicketsKeys(ticketsKeysFile)

New in version 1.6.0: Load new tickets keys from the selected file, replacing the existing ones.
These keys should be rotated often and never written to persistent storage to preserve forward
secrecy. The default is to generate a random key. The OpenSSL provider supports several tickets
keys to be able to decrypt existing sessions after the rotation, while the GnuTLS provider only
supports one key. See TLS Sessions Management for more information.

param str ticketsKeysFile The path to a file from where TLS tickets keys should be loaded.

:reloadCertificates()

New in version 1.6.0: Reload the current TLS certificate and key pairs.

:rotateTicketsKey()

New in version 1.6.0: Replace the current TLS tickets key by a new random one.

EDNS on Self-generated answers

There are several mechanisms in dnsdist that turn an existing query into an answer right away, without reaching
out to the backend, including SpoofAction(), RCodeAction(), TCAction() and returning a response
from Lua. Those responses should, according to RFC 6891, contain an OPT record if the received request had
one, which is the case by default and can be disabled using setAddEDNSToSelfGeneratedResponses().

We must, however, provide a responder’s maximum payload size in this record, and we can’t easily know the
maximum payload size of the actual backend so we need to provide one. The default value is 1232 since 1.6.0,
and can be overridden using setPayloadSizeOnSelfGeneratedAnswers().

setAddEDNSToSelfGeneratedResponses(add)
Whether to add EDNS to self-generated responses, provided that the initial query had EDNS.

Parameters add (bool) – Whether to add EDNS, default is true.

setPayloadSizeOnSelfGeneratedAnswers(payloadSize)
Changed in version 1.6.0: Default value changed from 1500 to 1232.

Set the UDP payload size advertised via EDNS on self-generated responses. In accordance with RFC 6891,
values lower than 512 will be treated as equal to 512.

Parameters payloadSize (int) – The responder’s maximum UDP payload size, in bytes.
Default is 1232 since 1.6.0, it was 1500 before.

Security Polling

PowerDNS products can poll the security status of their respective versions. This polling, naturally, happens over
DNS. If the result is that a given version has a security problem, the software will report this at level ‘Error’ during
startup, and repeatedly during operations, every setSecurityPollInterval() seconds.

192 Chapter 19. Reference Guides

https://tools.ietf.org/html/rfc6891.html
https://tools.ietf.org/html/rfc6891.html#section-6.2.5

dnsdist

By default, security polling happens on the domain ‘secpoll.powerdns.com’, but this can be changed with the
setSecurityPollSuffix() function. If this setting is made empty, no polling will take place. Organiza-
tions wanting to host their own security zones can do so by changing this setting to a domain name under their
control.

To enable distributors of PowerDNS to signal that they have backported versions, the PACKAGEVERSION
compilation-time macro can be used to set a distributor suffix.

setSecurityPollInterval(interval)
Set the interval, in seconds, between two security polls.

Parameters interval (int) – The interval, in seconds, between two polls. Default is 3600.

setSecurityPollSuffix(suffix)
Domain name from which to query security update notifications. Setting this to an empty string disables
secpoll.

Parameters suffix (string) – The suffix to use, default is ‘secpoll.powerdns.com.’.

19.3 Constants

There are many constants in dnsdist.

19.3.1 OPCode

These constants represent the OpCode of a query.

• DNSOpcode.Query

• DNSOpcode.IQuery

• DNSOpcode.Status

• DNSOpcode.Notify

• DNSOpcode.Update

Reference: https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-5

19.3.2 DNSClass

These constants represent the CLASS of a DNS record.

• DNSClass.IN

• DNSClass.CHAOS

• DNSClass.NONE

• DNSClass.ANY

Reference: https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-2

19.3.3 RCode

These constants represent the different RCODEs for DNS messages.

Changed in version 1.4.0: The prefix is changed from dnsdist to DNSRCode.

Changed in version 1.7.0: The lookup fallback from dnsdist to DNSRCode was removed.

• DNSRCode.NOERROR

• DNSRCode.FORMERR

19.3. Constants 193

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-5
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-5
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-2
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-2
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6

dnsdist

• DNSRCode.SERVFAIL

• DNSRCode.NXDOMAIN

• DNSRCode.NOTIMP

• DNSRCode.REFUSED

• DNSRCode.YXDOMAIN

• DNSRCode.YXRRSET

• DNSRCode.NXRRSET

• DNSRCode.NOTAUTH

• DNSRCode.NOTZONE

RCodes below are extended RCodes that can only be matched using ERCodeRule().

• DNSRCode.BADVERS

• DNSRCode.BADSIG

• DNSRCode.BADKEY

• DNSRCode.BADTIME

• DNSRCode.BADMODE

• DNSRCode.BADNAME

• DNSRCode.BADALG

• DNSRCode.BADTRUNC

• DNSRCode.BADCOOKIE

19.3.4 EDNSOptionCode

• EDNSOptionCode.DHU

• EDNSOptionCode.ECS

• EDNSOptionCode.N3U

• EDNSOptionCode.DAU

• EDNSOptionCode.TCPKEEPALIVE

• EDNSOptionCode.COOKIE

• EDNSOptionCode.PADDING

• EDNSOptionCode.KEYTAG

• EDNSOptionCode.NSID

• EDNSOptionCode.CHAIN

• EDNSOptionCode.EXPIRE

Reference: https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-11

19.3.5 DNS Packet Sections

These constants represent the section in the DNS Packet.

• DNSSection.Question

• DNSSection.Answer

194 Chapter 19. Reference Guides

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-11

dnsdist

• DNSSection.Authority

• DNSSection.Additional

19.3.6 DNSAction

Changed in version 1.5.0: DNSAction.SpoofRaw has been added.

Changed in version 1.8.0: DNSAction.SpoofPacket has been added.

These constants represent an Action that can be returned from LuaAction() functions.

• DNSAction.Allow: let the query pass, skipping other rules

• DNSAction.Delay: delay the response for the specified milliseconds (UDP-only), continue to the next
rule

• DNSAction.Drop: drop the query

• DNSAction.HeaderModify: indicate that the query has been turned into a response

• DNSAction.None: continue to the next rule

• DNSAction.NoOp: continue to the next rule (used for Dynamic Block actions where None has a different
meaning)

• DNSAction.Nxdomain: return a response with a NXDomain rcode

• DNSAction.Pool: use the specified pool to forward this query

• DNSAction.Refused: return a response with a Refused rcode

• DNSAction.ServFail: return a response with a ServFail rcode

• DNSAction.Spoof: spoof the response using the supplied IPv4 (A), IPv6 (AAAA) or string (CNAME)
value. TTL will be 60 seconds.

• DNSAction.SpoofPacket: spoof the response using the supplied raw packet

• DNSAction.SpoofRaw: spoof the response using the supplied raw value as record data (see also
DNSQuestion:spoof() and dnsdist_ffi_dnsquestion_spoof_raw() to spoof multiple
values)

• DNSAction.Truncate: truncate the response

• DNSAction.NoRecurse: set rd=0 on the query

19.3.7 DNSQType

Changed in version 1.4.0: The prefix is changed from dnsdist. to DNSQType.

Changed in version 1.7.0: The lookup fallback from dnsdist to DNSQType was removed.

All named QTypes are available as constants, prefixed with DNSQType., e.g.:

• DNSQType.AAAA

• DNSQType.AXFR

• DNSQType.A

• DNSQType.NS

• DNSQType.SOA

• etc.

19.3. Constants 195

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4

dnsdist

19.3.8 DNSResponseAction

Changed in version 1.9.0: The DNSResponseAction.Truncate value was added.

These constants represent an Action that can be returned from LuaResponseAction() functions.

• DNSResponseAction.Allow: let the response pass, skipping other rules

• DNSResponseAction.Delay: delay the response for the specified milliseconds (UDP-only), continue
to the next rule

• DNSResponseAction.Drop: drop the response

• DNSResponseAction.HeaderModify: indicate that the query has been turned into a response

• DNSResponseAction.None: continue to the next rule

• DNSResponseAction.ServFail: return a response with a ServFail rcode

• DNSResponseAction.Truncate: truncate the response, removing all records from the answer, au-
thority and additional sections if any

19.4 ComboAddress

IP addresses are moved around in a native format, called a ComboAddress. ComboAddresses can be IPv4 or
IPv6, and unless you want to know, you don’t need to.

newCA(address)→ ComboAddress
Returns a ComboAddress based on address

Parameters address (string) – The IP address, with optional port, to represent.

class ComboAddress
A ComboAddress represents an IP address with possibly a port number. The object can be an IPv4 or an
IPv6 address. It has these methods:

:getPort()→ int
Returns the port number.

:ipdecrypt(key)→ ComboAddress
Decrypt this IP address as described in https://powerdns.org/ipcipher

Parameters key (string) – A 16 byte key. Note that this can be derived from a
passphrase with the standalone function makeIPCipherKey

:ipencrypt(key)→ ComboAddress
Encrypt this IP address as described in https://powerdns.org/ipcipher

Parameters key (string) – A 16 byte key. Note that this can be derived from a
passphrase with the standalone function makeIPCipherKey

:isIPv4()→ bool
Returns true if the address is an IPv4, false otherwise

:isIPv6()→ bool
Returns true if the address is an IPv6, false otherwise

:isMappedIPv4()→ bool
Returns true if the address is an IPv4 mapped into an IPv6, false otherwise

:mapToIPv4()→ ComboAddress
Convert an IPv4 address mapped in a v6 one into an IPv4. Returns a new ComboAddress

:tostring()→ string
:toString()→ string

Returns in human-friendly format

196 Chapter 19. Reference Guides

https://powerdns.org/ipcipher
https://powerdns.org/ipcipher

dnsdist

:tostringWithPort()→ string
:toStringWithPort()→ string

Returns in human-friendly format, with port number

:truncate(bits)
Truncate the ComboAddress to the specified number of bits. This essentially zeroes all bits after
bits.

Parameters bits (int) – Amount of bits to truncate to

19.5 Netmask

newNetmask(str)→ Netmask
newNetmask(ca, bits)→ Netmask

New in version 1.5.0.

Returns a Netmask

Parameters

• str (string) – A netmask, like 192.0.2.0/24.

• ca (ComboAddress) – A ComboAddress.

• bits (int) – The number of bits in this netmask.

class Netmask
New in version 1.5.0: Represents a netmask.

:getBits()→ int
Return the number of bits of this netmask, for example 24 for 192.0.2.0/24.

:getMaskedNetwork()→ ComboAddress
Return a ComboAddress object representing the base network of this netmask object after mask-
ing any additional bits if necessary (for example 192.0.2.0 if the netmask was constructed with
newNetmask('192.0.2.1/24')).

:empty()→ bool
Return true if the netmask is empty, meaning that the netmask has not been set to a proper value.

:isIPv4()→ bool
Return true if the netmask is an IPv4 one.

:isIPv6()→ bool
Return true if the netmask is an IPv6 one.

:getNetwork()→ ComboAddress
Return a ComboAddress object representing the base network of this netmask object.

:match(str)→ bool
Return true if the address passed in the str parameter belongs to this netmask.

Parameters str (string) – A network address, like 192.0.2.0.

:toString()→ string
Return a string representation of the netmask, for example 192.0.2.0/24.

19.6 NetmaskGroup

newNMG()→ NetmaskGroup
Returns a NetmaskGroup

class NetmaskGroup

19.5. Netmask 197

dnsdist

Represents a group of netmasks that can be used to match ComboAddresses against.

:addMask(mask)
:addMasks(masks)

Add one or more masks to the NMG.

Parameters

• mask (string) – Add this mask, prefix with ! to exclude this mask from matching.

• masks (table) – Adds the keys of the table to the NetmaskGroup. It should be
a table whose keys are ComboAddress objects and whose values are integers. The
integer values of the table entries are ignored. The table is of the same type as the
table returned by the exceed* functions.

:addNMG(otherNMG)
New in version 1.9.0.

Add all masks from an existing NMG to this NMG.

Parameters otherNMG (NetmaskGroup) – Add the masks from a NetmaskGroup to
this one.

:match(address)→ bool
Checks if address is matched by this NetmaskGroup.

Parameters address (ComboAddress) – The address to match.

:clear()
Clears the NetmaskGroup.

:size()→ int
Returns number of netmasks in this NetmaskGroup.

19.7 DNSName objects

A DNSName object represents a name in the DNS. It has several functions that can manipulate it without conver-
sions to strings. Creating a DNSName is done with the newDNSName():

myname = newDNSName("www.example.com")

dnsdist will complain loudly if the name is invalid (e.g. too long, dot in the wrong place).

The myname variable has several functions to get information from it

print(myname:countLabels()) -- prints "3"
print(myname:wirelength()) -- prints "17"
name2 = newDNSName("example.com")
if myname:isPartOf(name2) then -- prints "it is"
print('it is')

end

19.7.1 Functions and methods of a DNSName

newDNSName(name)→ DNSName
Returns the DNSName object of name.

Parameters name (string) – The name to create a DNSName for

class DNSName
A DNSName object represents a name in the DNS. It is returned by several functions and has several func-
tions to programmatically interact with it.

198 Chapter 19. Reference Guides

dnsdist

:chopOff()→ bool
Removes the left-most label and returns true. false is returned if no label was removed

:countLabels()→ int
Returns the number of DNSLabels in the name

:isPartOf(name)→ bool
Returns true if the DNSName is part of the DNS tree of name.

Parameters name (DNSName) – The name to check against

:makeRelative(name)→ DNSName
New in version 1.8.0.

Provided that the current name is part of the supplied name, returns a new DNSName composed only of
the labels that are below the supplied name (ie making www.powerdns.com relative to powerdns.com
would return only wwww) Otherwise an empty (unset) DNSName is returned.

Parameters name (DNSName) – The name to make us relative against

:toDNSString()→ string
Returns a wire format form of the DNSName, suitable for usage in SpoofRawAction().

:toString()→ string
:tostring()→ string

Returns a human-readable form of the DNSName.

:toStringNoDot()→ string
New in version 1.8.0.

Returns a human-readable form of the DNSName, without the trailing dot.

:wirelength()→ int
Returns the length in bytes of the DNSName as it would be on the wire.

19.8 DNSNameSet objects

A DNSNameSet object is a set of DNSName objects. Based on std::unordered_set (hash table). Creating a
DNSName is done with the newDNSNameSet():

myset = newDNSNameSet()

The set can be filled by func:DNSNameSet:add:

myset:add(newDNSName("domain1.tld"))
myset:add(newDNSName("domain2.tld"))

19.8.1 Functions and methods of a DNSNameSet

newDNSNameSet()→ DNSNameSet
Returns the DNSNameSet.

class DNSNameSet
A DNSNameSet object is a set of DNSName objects.

:add(name)
Adds the name to the set.

Parameters name (DNSName) – The name to add.

:empty()→ bool
Returns true is the DNSNameSet is empty.

19.8. DNSNameSet objects 199

dnsdist

:clear()
Clean up the set.

:toString()→ string
Returns a human-readable form of the DNSNameSet.

:size()→ int
Returns the number of names in the set.

:delete(name)→ int
Removes the name from the set. Returns the number of deleted elements.

Parameters name (DNSName) – The name to remove.

:check(name)→ bool
Returns true if the set contains the name.

Parameters name (DNSName) – The name to check.

19.9 The DNSQuestion (dq) object

A DNSQuestion or dq object is available in several hooks and Lua actions. This object contains details about the
current state of the question. This state can be modified from the various hooks.

class DNSQuestion
The DNSQuestion object has several attributes, many of them read-only:

deviceID
New in version 1.8.0.

The identifier of the remote device, which will be exported via ProtoBuf if set.

deviceName
New in version 1.8.0.

The name of the remote device, which will be exported via ProtoBuf if set.

dh
The DNSHeader (dh) object of this query.

ecsOverride
Whether an existing ECS value should be overridden, settable.

ecsPrefixLength
The ECS prefix length to use, settable.

len
The length of the data starting at DNSQuestion.dh, including any trailing bytes following the DNS
message.

localaddr
ComboAddress of the local bind this question was received on.

opcode
Integer describing the OPCODE of the packet. Can be matched against OPCode.

pool
New in version 1.8.0.

The pool of servers to which this query will be routed.

qclass
QClass (as an unsigned integer) of this question. Can be compared against DNSClass.

qname
DNSName of this question.

200 Chapter 19. Reference Guides

dnsdist

qtype
QType (as an unsigned integer) of this question. Can be compared against the pre-defined constants
like DNSQType.A, DNSQType.AAAA.

remoteaddr
ComboAddress of the remote client.

requestorID
New in version 1.8.0.

The identifier of the requestor, which will be exported via ProtoBuf if set.

rcode
RCode (as an unsigned integer) of this question. Can be compared against RCode

size
The total size of the buffer starting at DNSQuestion.dh.

skipCache
Whether to skip cache lookup / storing the answer for this question, settable.

tempFailureTTL
On a SERVFAIL or REFUSED from the backend, cache for this amount of seconds, settable.

tcp
Whether the query was received over TCP.

useECS
Whether to send ECS to the backend, settable.

It also supports the following methods:

:addProxyProtocolValue(type, value)
New in version 1.6.0.

Add a proxy protocol TLV entry of type type and value to the current query.

Parameters

• type (int) – The type of the new value, ranging from 0 to 255 (both included)

• value (str) – The binary-safe value

:getContent()→ str
New in version 1.8.0.

Get the content of the DNS packet as a string

:getDO()→ bool
Get the value of the DNSSEC OK bit.

Returns true if the DO bit was set, false otherwise

:getEDNSOptions()→ table
Return the list of EDNS Options, if any.

Returns A table of EDNSOptionView objects, indexed on the ECS Option code

:getHTTPHeaders()→ table
New in version 1.4.0.

Changed in version 1.8.0: see keepIncomingHeaders on addDOHLocal()

Return the HTTP headers for a DoH query, as a table whose keys are the header names and values
the header values. Since 1.8.0 it is necessary to set the keepIncomingHeaders option to true on
addDOHLocal() to be able to use this method.

Returns A table of HTTP headers

19.9. The DNSQuestion (dq) object 201

dnsdist

:getHTTPHost()→ string
New in version 1.4.0.

Return the HTTP Host for a DoH query, which may or may not contain the port.

Returns The host of the DoH query

:getHTTPPath()→ string
New in version 1.4.0.

Return the HTTP path for a DoH query.

Returns The path part of the DoH query URI

:getHTTPQueryString()→ string
New in version 1.4.0.

Return the HTTP query string for a DoH query.

Returns The query string part of the DoH query URI

:getHTTPScheme()→ string
New in version 1.4.0.

Return the HTTP scheme for a DoH query.

Returns The scheme of the DoH query, for example http or https

:getProtocol()→ string
New in version 1.7.0.

Return the transport protocol this query was received over, as a string. The possible values are:

• “Do53 UDP”

• “Do53 TCP”

• “DNSCrypt UDP”

• “DNSCrypt TCP”

• “DNS over TLS”

• “DNS over HTTPS”

Returns A string

:getProxyProtocolValues()→ table
New in version 1.6.0.

Return a table of the Proxy Protocol values currently set for this query.

Returns A table whose keys are types and values are binary-safe strings

DNSQuestion:getQueryTime -> timespec
New in version 1.8.0.

Return the time at which the current query has been received, in whole seconds and nanoseconds since
epoch, as a timespec object.

Returns A timespec object

:getServerNameIndication()→ string
New in version 1.4.0.

Return the TLS Server Name Indication (SNI) value sent by the client over DoT or DoH, if any. See
SNIRule() for more information, especially about the availability of SNI over DoH.

Returns A string containing the TLS SNI value, if any

:getTag(key)→ string
Get the value of a tag stored into the DNSQuestion object.

202 Chapter 19. Reference Guides

dnsdist

Parameters key (string) – The tag’s key

Returns The tag’s value if it was set, an empty string otherwise

:getTagArray()→ table
Get all the tags stored into the DNSQuestion object.

Returns A table of tags, using strings as keys and values

:getTrailingData()→ string
New in version 1.4.0.

Get all data following the DNS message.

Returns The trailing data as a null-safe string

:changeName(newName)→ bool
New in version 1.8.0.

Change the qname of the current query in the DNS payload. The reverse operation will have to be
done on the response to set it back to the initial name, or the client will be confused and likely drop
the response. See DNSResponse:changeName(). Returns false on failure, true on success.

Parameters newName (DNSName) – The new qname to use

:sendTrap(reason)
Send an SNMP trap.

Parameters reason (string) – An optional string describing the reason why this trap
was sent

:setContent(data)
New in version 1.8.0.

Replace the whole DNS payload of the query with the supplied data. The new DNS payload must
include the DNS header, whose ID will be adjusted to match the one of the existing query. For
example, this replaces the whole DNS payload of queries for custom.async.tests.powerdns.com and
type A, turning it them into FORMERR responses, including EDNS with the DNSSECOK bit set and a
UDP payload size of 1232:

function replaceQueryPayload(dq)
local raw =

→˓'\000\000\128\129\000\001\000\000\000\000\000\001\006custom\005async\005tests\008powerdns\003com\000\000\001\000\001\000\000\041\002\000\000\000\128\000\000\\000
→˓'
dq:setContent(raw)
return DNSAction.Allow

end
addAction(AndRule({QTypeRule(DNSQType.A), makeRule('custom.async.tests.
→˓powerdns.com')}), LuaAction(replaceQueryPayload))

Parameters data (string) – The raw DNS payload

:setEDNSOption(code, data)
New in version 1.8.0.

Add arbitrary EDNS option and data to the query. Any existing EDNS content with the same option
code will be overwritten.

Parameters

• code (int) – The EDNS option code

• data (string) – The EDNS option raw data

:setExtendedDNSError(infoCode[, extraText])
New in version 1.9.0: Set an Extended DNS Error status that will be added to the response correspond-
ing to the current query.

19.9. The DNSQuestion (dq) object 203

dnsdist

Parameters

• infoCode (int) – The EDNS Extended DNS Error code

• extraText (string) – The optional EDNS Extended DNS Error extra text

:setHTTPResponse(status, body, contentType="")
New in version 1.4.0.

Set the HTTP status code and content to immediately send back to the client. For HTTP redirects
(3xx), the string supplied in body should be the URL to redirect to. For 200 responses, the value of
the content type header can be specified via the contentType parameter. In order for the response to
be sent, the QR bit should be set before returning and the function should return Action.HeaderModify.

Parameters

• status (int) – The HTTP status code to return

• body (string) – The body of the HTTP response, or a URL if the status code is a
redirect (3xx)

• contentType (string) – The HTTP Content-Type header to return for a 200
response, ignored otherwise. Default is application/dns-message.

:setNegativeAndAdditionalSOA(nxd, zone, ttl, mname, rname, serial, refresh, retry, expire,
minimum)

New in version 1.5.0.

Turn a question into a response, either a NXDOMAIN or a NODATA one based on nxd, setting the
QR bit to 1 and adding a SOA record in the additional section.

Parameters

• nxd (bool) – Whether the answer is a NXDOMAIN (true) or a NODATA (false)

• zone (string) – The owner name for the SOA record

• ttl (int) – The TTL of the SOA record

• mname (string) – The mname of the SOA record

• rname (string) – The rname of the SOA record

• serial (int) – The value of the serial field in the SOA record

• refresh (int) – The value of the refresh field in the SOA record

• retry (int) – The value of the retry field in the SOA record

• expire (int) – The value of the expire field in the SOA record

• minimum (int) – The value of the minimum field in the SOA record

:setProxyProtocolValues(values)
New in version 1.5.0.

Set the Proxy-Protocol Type-Length values to send to the backend along with this query.

Parameters values (table) – A table of types and values to send, for example: {
[0x00] = "foo", [0x42] = "bar" }. Note that the type must be an in-
teger. Try to avoid these values: 0x01 - 0x05, 0x20 - 0x25, 0x30 as those are
predefined in https://www.haproxy.org/download/2.3/doc/proxy-protocol.txt (search for
PP2_TYPE_ALPN)

:setRestartable()
New in version 1.8.0.

Make it possible to restart that query after receiving the response, for example to try a different pool
of servers after receiving a SERVFAIL or a REFUSED response. Under the hood, this tells dnsdist
to keep a copy of the initial query around so that we can send it a second time if needed. Copying

204 Chapter 19. Reference Guides

https://www.haproxy.org/download/2.3/doc/proxy-protocol.txt

dnsdist

the initial DNS payload has a small memory and CPU cost and thus is not done by default. See also
DNSResponse:restart().

:setTag(key, value)
Changed in version 1.7.0: Prior to 1.7.0 calling DNSQuestion:setTag() would not overwrite an
existing tag value if already set.

Set a tag into the DNSQuestion object. Overwrites the value if any already exists.

Parameters

• key (string) – The tag’s key

• value (string) – The tag’s value

:setTagArray(tags)
Changed in version 1.7.0: Prior to 1.7.0 calling DNSQuestion:setTagArray() would not over-
write existing tag values if already set.

Set an array of tags into the DNSQuestion object. Overwrites the values if any already exist.

Parameters tags (table) – A table of tags, using strings as keys and values

:setTrailingData(tail)→ bool
New in version 1.4.0.

Set the data following the DNS message, overwriting anything already present.

Parameters tail (string) – The new data

Returns true if the operation succeeded, false otherwise

:spoof(ip|ips|raw|raws[, typeForAny])
New in version 1.6.0.

Changed in version 1.9.0: Optional parameter typeForAny added.

Forge a response with the specified record data as raw bytes. If you specify list of raws (it is assumed
they match the query type), all will get spoofed in.

Parameters

• ip (ComboAddress) – The ComboAddress to be spoofed, e.g.
newCA(“192.0.2.1”).

• ComboAddresses ips (table) – The ComboAddress‘es to be spoofed, e.g. ‘{
newCA(“192.0.2.1”), newCA(“192.0.2.2”) }.

• raw (string) – The raw string to be spoofed, e.g. “\192\000\002\001”.

• raws (table) – The raw strings to be spoofed, e.g. { “\192\000\002\001”,
“\192\000\002\002” }.

• typeForAny (int) – The type to use for raw responses when the requested type is
ANY, as using ANY for the type of the response record would not make sense.

:suspend(asyncID, queryID, timeoutMS)→ bool
New in version 1.8.0.

Suspend the processing for the current query, making it asynchronous. The query is then placed into
memory, in a map called the Asynchronous Holder, until it is either resumed or the supplied timeout
kicks in. The object is stored under a key composed of the tuple (asyncID, queryID) which is needed to
retrieve it later, which can be done via getAsynchronousObject(). Note that the DNSQuestion
object should NOT be accessed after successfully calling this method. Returns true on success and
false on failure, indicating that the query has not been suspended and the normal processing will
continue.

Parameters

• asyncID (int) – A numeric identifier used to identify the suspended query for later
retrieval. Valid values range from 0 to 65535, both included.

19.9. The DNSQuestion (dq) object 205

dnsdist

• queryID (int) – A numeric identifier used to identify the suspended query for later
retrieval. This ID does not have to match the query ID present in the initial DNS
header. A given (asyncID, queryID) tuple should be unique at a given time. Valid
values range from 0 to 65535, both included.

• timeoutMS (int) – The maximum duration this query will be kept in the asyn-
chronous holder before being automatically resumed, in milliseconds.

19.10 DNSResponse object

class DNSResponse
This object has almost all the functions and members of a DNSQuestion, except for the following ones
which are not available on a response:

• addProxyProtocolValue

• ecsOverride

• ecsPrefixLength

• getProxyProtocolValues

• getHTTPHeaders

• getHTTPHost

• getHTTPPath

• getHTTPQueryString

• setHTTPResponse

• getHTTPScheme

• getServerNameIndication

• setNegativeAndAdditionalSOA

• setProxyProtocolValues

• spoof

• tempFailureTTL

• useECS

If the value is really needed while the response is being processed, it is possible to set a tag while the query
is processed, as tags will be passed to the response object. It also has additional methods:

getSelectedBackend()→ Server
New in version 1.9.0.

Get the selected backend Server or nil

:editTTLs(func)
The function func is invoked for every entry in the answer, authority and additional section.

func points to a function with the following prototype: myFunc(section, qclass, qtype,
ttl)

All parameters to func are integers:

• section is the section in the packet and can be compared to DNS Packet Sections

• qclass is the QClass of the record. Can be compared to DNSClass

• qtype is the QType of the record. Can be e.g. compared to DNSQType.A, DNSQType.AAAA
constants and the like.

• ttl is the current TTL

206 Chapter 19. Reference Guides

dnsdist

This function must return an integer with the new TTL. Setting this TTL to 0 to leaves it unchanged

Parameters func (string) – The function to call to edit TTLs.

:changeName(initialName)→ bool
New in version 1.8.0.

Change, in the DNS payload of the current response, the qname and the owner name of records to
the supplied new name, if they are matching exactly the initial qname. This only makes if the reverse
operation was performed on the query, or the client will be confused and likely drop the response. Note
that only records whose owner name matches the qname in the initial response will be rewritten, and
that only the owner name itself will be altered, not the content of the record rdata. For some records
this might cause an issue with compression pointers contained in the payload, as they might no longer
point to the correct position in the DNS payload. To prevent that, the records are checked against
a list of supported record types, and the rewriting will not be performed if an unsupported type is
present. As of 1.8.0 the list of supported types is: A, AAAA, DHCID, TXT, OPT, HINFO, DNSKEY,
CDNSKEY, DS, CDS, DLV, SSHFP, KEY, CERT, TLSA, SMIMEA, OPENPGPKEY, NSEC, NSEC3,
CSYNC, NSEC3PARAM, LOC, NID, L32, L64, EUI48, EUI64, URI, CAA, NS, PTR, CNAME,
DNAME, RRSIG, MX, SOA, SRV Therefore this functionality only makes sense when the initial
query is requesting a very simple type, like A or AAAA.

See also DNSQuestion:changeName(). Returns false on failure, true on success.

Parameters initialName (DNSName) – The initial qname

:restart()
New in version 1.8.0.

Discard the received response and restart the processing of the query. For this function to be usable,
the query should have been made restartable first, via DNSQuestion:setRestartable(). For
example, to restart the processing after selecting a different pool of servers:

function makeQueryRestartable(dq)
-- make it possible to restart that query later
-- by keeping a copy of the initial DNS payload around
dq:setRestartable()
return DNSAction.None

end
function restartOnServFail(dr)

-- if the query was SERVFAIL and not already tried on the restarted pool
if dr.rcode == DNSRCode.SERVFAIL and dr.pool ~= 'restarted' then
-- assign this query to a new pool
dr.pool = 'restarted'
-- discard the received response and
-- restart the processing of the query
dr:restart()

end
return DNSResponseAction.None

end
addAction(AllRule(), LuaAction(makeQueryRestartable))
addResponseAction(AllRule(), LuaResponseAction(restartOnServFail))

19.11 DNSHeader (dh) object

class DNSHeader
This object holds a representation of a DNS packet’s header.

:getAA()→ bool
Get authoritative answer flag.

:getAD()→ bool
Get authentic data flag.

19.11. DNSHeader (dh) object 207

dnsdist

:getCD()→ bool
Get checking disabled flag.

:getID()→ int
New in version 1.8.0.

Get the ID.

:getRA()→ bool
Get recursion available flag.

:getRD()→ bool
Get recursion desired flag.

:getTC()→ bool
New in version 1.8.1.

Get the TC flag.

:setAA(aa)
Set authoritative answer flag.

Parameters aa (bool) – State of the AA flag

:setAD(ad)
Set authentic data flag.

Parameters ad (bool) – State of the AD flag

:setCD(cd)
Set checking disabled flag.

Parameters cd (bool) – State of the CD flag

:setQR(qr)
Set Query/Response flag. Setting QR to true means “This is an answer packet”.

Parameters qr (bool) – State of the QR flag

:setRA(ra)
Set recursion available flag.

Parameters ra (bool) – State of the RA flag

:setRD(rd)
Set recursion desired flag.

Parameters rd (bool) – State of the RD flag

:setTC(tc)
Set truncation flag (TC).

Parameters tc (bool) – State of the TC flag

19.12 EDNSOptionView object

class EDNSOptionView
An object that represents the values of a single EDNS option received in a query.

:count()
The number of values for this EDNS option.

:getValues()
Return a table of NULL-safe strings values for this EDNS option.

208 Chapter 19. Reference Guides

dnsdist

19.13 AsynchronousObject object

class AsynchronousObject
New in version 1.8.0.

This object holds a representation of a DNS query or response that has been suspended.

:drop()→ bool
Drop that object immediately, without resuming it. Returns true on success, false on failure.

:getDQ()→ DNSQuestion
Return a DNSQuestion object for the suspended object.

:getDR()→ DNSResponse
Return a DNSResponse object for the suspended object.

:resume()→ bool
Resume the processing of the suspended object. For a question, it means first checking whether it
was turned into a response, and sending the response out it it was. Otherwise do a cache-lookup: on
a cache-hit, the response will be sent immediately. On a cache-miss, it means dnsdist will select a
backend and send the query to the backend. For a response, it means inserting into the cache if needed
and sending the response to the backend. Note that the AsynchronousObject object should NOT be
accessed after successfully calling this method. Returns true on success, false on failure.

:setRCode(rcode, clearRecords)→ bool
Set the response code in the DNS header of the current object to the supplied value, optionally remov-
ing all records from the existing payload, if any. Returns true on success, false on failure.

Parameters

• code (int) – The response code to set

• clearRecords (bool) – Whether to clear all records from the existing payload, if
any

getAsynchronousObject(asyncID, queryID)→ AsynchronousObject
New in version 1.8.0.

Retrieves an asynchronous object stored into the Asynchronous holder.

param int asyncID A numeric identifier used to identify the query when it was sus-
pended

param int queryID A numeric identifier used to identify the query when it was sus-
pended

19.14 eBPF functions and objects

These are all the functions, objects and methods related to the eBPF Socket Filtering.

addBPFFilterDynBlocks(addresses, dynbpf [[, seconds=10], msg])
This is the eBPF equivalent of addDynBlocks(), blocking a set of addresses for (optionally) a number
of seconds, using an eBPF dynamic filter. The default number of seconds to block for is 10. Since 1.6.0, the
use of a DynBlockRulesGroup is a much more efficient way of doing the same thing.

Parameters

• addresses – set of Addresses as returned by an exceed function

• dynbpf (DynBPFFilter) – The dynamic eBPF filter to use

• seconds (int) – The number of seconds this block to expire

• msg (str) – A message to display while inserting the block

newBPFFilter(options)→ BPFFilter

19.13. AsynchronousObject object 209

dnsdist

newBPFFilter(v4Parameters, v6Parameters, qnamesParameters) -> BPFFilter (1.7.x)
newBPFFilter(maxV4, maxV6, maxQNames) -> BPFFilter (before 1.7.0)

Changed in version 1.7.0: This function now supports a table for each parameters, and the ability to use
pinned eBPF maps.

Changed in version 1.8.0: This function now gets its parameters via a table.

Return a new eBPF socket filter with a maximum of maxV4 IPv4, maxV6 IPv6 and maxQNames qname
entries in the block tables. Maps can be pinned to a filesystem path, which makes their content persistent
across restarts and allows external programs to read their content and to add new entries. dnsdist will try
to load maps that are pinned to a filesystem path on startups, inheriting any existing entries, and fall back
to creating them if they do not exist yet. Note that the user dnsdist is running under must have the right
privileges to read and write to the given file, and to go through all the directories in the path leading to that
file. The pinned path must be on a filesystem of type BPF, usually below /sys/fs/bpf/.

Parameters options (table) – A table with key: value pairs with options.

Options:

• ipv4MaxItems: int - The maximum number of entries in the IPv4 map. Default is 0 which will not
allow any entry at all.

• ipv4PinnedPath: str - The filesystem path this map should be pinned to.

• ipv6MaxItems: int - The maximum number of entries in the IPv6 map. Default is 0 which will not
allow any entry at all.

• ipv6PinnedPath: str - The filesystem path this map should be pinned to.

• cidr4MaxItems: int - The maximum number of entries in the IPv4 range block map. Default is 0
which will not allow any entry at all.

• cidr4PinnedPath: str - The filesystem path this map should be pinned to.

• cidr6MaxItems: int - The maximum number of entries in the IPv6 range block map. Default is 0
which will not allow any entry at all.

• cidr6PinnedPath: str - The filesystem path this map should be pinned to.

• qnamesMaxItems: int - The maximum number of entries in the qname map. Default is 0 which
will not allow any entry at all.

• qnamesPinnedPath: str - The filesystem path this map should be pinned to.

• external: bool - If set to true, DNSDist does not load the internal eBPF program.

newDynBPFFilter(bpf)→ DynBPFFilter
Return a new dynamic eBPF filter associated to a given BPF Filter.

Parameters bpf (BPFFilter) – The underlying eBPF filter

setDefaultBPFFilter(filter)
When used at configuration time, the corresponding BPFFilter will be attached to every bind.

Parameters filter (BPFFilter) – The filter to attach

registerDynBPFFilter(dynbpf)

Register a DynBPFFilter filter so that it appears in the web interface and the API.

Parameters dynbpf (DynBPFFilter) – The dynamic eBPF filter to register

unregisterDynBPFFilter(dynbpf)

Remove a DynBPFFilter filter from the web interface and the API.

Parameters dynbpf (DynBPFFilter) – The dynamic eBPF filter to unregister

210 Chapter 19. Reference Guides

dnsdist

class BPFFilter
Represents an eBPF filter

:attachToAllBinds()
Attach this filter to every bind already defined. This is the run-time equivalent of
setDefaultBPFFilter(). This method can be used at run-time only.

:block(address)
Block this address

Parameters address (ComboAddress) – The address to block

:addRangeRule(Netmask, action[, force=false])
New in version 1.8.0.

Block all IP addresses in this range.

DNSDist eBPF code first checks if an exact IP match is found, then if a range matches, and finally if
a DNSName does.

Parameters

• Netmask (string) – The ip range to block, allow or truncate

• action (int) – set action to 0 to allow a range, set action to 1 to block a
range, set action to 2 to truncate a range.

• force (bool) – When force is set to true, DNSDist always accepts adding a new
item to BPF maps, even if the item to be added may already be included in the larger
network range.

:blockQName(name[, qtype=255])
Block queries for this exact qname. An optional qtype can be used, defaults to 255.

Parameters

• name (DNSName) – The name to block

• qtype (int) – QType to block

:getStats()
Print the block tables.

:unblock(address)
Unblock this address.

Parameters address (ComboAddress) – The address to unblock

:rmRangeRule(Netmask)
New in version 1.8.0.

Parameters string (Netmask) – The rule you want to remove

:lsRangeRule()
New in version 1.8.0.

List all range rule.

:unblockQName(name[, qtype=255])
Remove this qname from the block list.

Parameters

• name (DNSName) – the name to unblock

• qtype (int) – The qtype to unblock

class DynBPFFilter
Represents an dynamic eBPF filter, allowing the use of ephemeral rules to an existing eBPF filter. Note
that since 1.6.0 the default BPF filter set via setDefaultBPFFilter() will automatically be used by
a DynBlockRulesGroup, becoming the preferred way of dealing with ephemeral rules.

19.14. eBPF functions and objects 211

dnsdist

:purgeExpired()
Remove the expired ephemeral rules associated with this filter.

:excludeRange(netmasks)
Exclude this range, or list of ranges, meaning that no dynamic block will ever be inserted for clients in
that range. Default to empty, meaning rules are applied to all ranges. When used in combination with
DynBPFFilter:includeRange(), the more specific entry wins.

Parameters or list of str netmasks (str) – A netmask, or list of netmasks, as
strings, like for example “192.0.2.1/24”

:includeRange(netmasks)
Include this range, or list of ranges, meaning that rules will be applied to this range. When used in
combination with DynBPFFilter:excludeRange(), the more specific entry wins.

Parameters or list of str netmasks (str) – A netmask, or list of netmasks, as
strings, like for example “192.0.2.1/24”

19.15 DNSCrypt objects and functions

addDNSCryptBind(address, provider, certFile(s), keyFile(s)[, options])
Changed in version 1.4.0: Removed doTCP from the options. A listen socket on TCP is always created.
certFile(s) and keyFile(s) now accept a list of files.

Changed in version 1.5.0: Added tcpListenQueueSize parameter.

Changed in version 1.6.0: Added maxInFlight and maxConcurrentTCPConnections parameters.

Adds a DNSCrypt listen socket on address.

Parameters

• address (string) – The address and port to listen on

• provider (string) – The provider name for this bind

• certFile(s) (str) – The path to a X.509 certificate file in PEM format, or a list of
paths to such files.

• keyFile(s) (str) – The path to the private key file corresponding to the certificate,
or a list of paths to such files, whose order should match the certFile(s) ones.

• options (table) – A table with key: value pairs with options (see below)

Options:

• doTCP=true: bool - Also bind on TCP on address, removed in 1.4.0.

• reusePort=false: bool - Set the SO_REUSEPORT socket option.

• tcpFastOpenQueueSize=0: int - Set the TCP Fast Open queue size, enabling TCP Fast Open
when available and the value is larger than 0

• interface="": str - Sets the network interface to use

• cpus={}: table - Set the CPU affinity for this listener thread, asking the scheduler to run it on
a single CPU id, or a set of CPU ids. This parameter is only available if the OS provides the
pthread_setaffinity_np() function.

• tcpListenQueueSize=SOMAXCONN: int - Set the size of the listen queue. Default is
SOMAXCONN.

• maxInFlight=0: int - Maximum number of in-flight queries. The default is 0, which disables
out-of-order processing.

• maxConcurrentTCPConnections=0: int - Maximum number of concurrent incoming TCP con-
nections. The default is 0 which means unlimited.

212 Chapter 19. Reference Guides

dnsdist

generateDNSCryptProviderKeys(publicKey, privateKey)
Generate a new provider keypair and write them to publicKey and privateKey.

Parameters

• publicKey (string) – path to write the public key to

• privateKey (string) – path to write the private key to

generateDNSCryptCertificate(privatekey, certificate, keyfile, serial, validFrom, validUntil[, ver-
sion])

generate a new resolver private key and related certificate, valid from the validFrom UNIX timestamp
until the validUntil one, signed with the provider private key.

Parameters

• privatekey (string) – Path to the private key of the provider

• certificate (string) – Path where to write the certificate file

• keyfile (string) – Path where to write the private key for the certificate

• serial (int) – The certificate’s serial number

• validFrom (int) – Unix timestamp from when the certificate will be valid

• validUntil (int) – Unix timestamp until when the certificate will be valid

• version (DNSCryptExchangeVersion) – The exchange version to use. Pos-
sible values are DNSCryptExchangeVersion::VERSION1 (default, X25519-
XSalsa20Poly1305) and DNSCryptExchangeVersion::VERSION2 (X25519-
XChacha20Poly1305)

printDNSCryptProviderFingerprint(keyfile)
Display the fingerprint of the provided resolver public key

Parameters keyfile (string) – Path to the key file

showDNSCryptBinds()
Display the currently configured DNSCrypt binds

getDNSCryptBind(n)→ DNSCryptContext
Return the DNSCryptContext object corresponding to the bind n.

getDNSCryptBindCount()
New in version 1.5.0.

Return the number of DNSCrypt binds.

19.15.1 Certificates

class DNSCryptCert
Represents a DNSCrypt certificate.

:getClientMagic()→ string
Return this certificate’s client magic value.

:getEsVersion()→ string
Return the cryptographic construction to use with this certificate,.

:getMagic()→ string
Return the certificate magic number.

:getProtocolMinorVersion()→ string
Return this certificate’s minor version.

:getResolverPublicKey()→ string
Return the public key corresponding to this certificate.

19.15. DNSCrypt objects and functions 213

dnsdist

:getSerial()→ int
Return the certificate serial number.

:getSignature()→ string
Return this certificate’s signature.

:getTSEnd()→ int
Return the date the certificate is valid from, as a Unix timestamp.

:getTSStart()→ int
Return the date the certificate is valid until (inclusive), as a Unix timestamp

19.15.2 Certificate Pairs

class DNSCryptCertificatePair
Represents a pair of DNSCrypt certificate and associated key

:getCertificate()→ DNSCryptCert
Return the certificate.

:isActive()→ bool
Return whether this pair is active and will be advertised to clients.

19.15.3 Context

class DNSCryptContext
Represents a DNSCrypt content. Can be used to rotate certs.

:addNewCertificate(cert, key[, active])
Add a new certificate to the given context. Active certificates are advertised to clients, inactive ones
are not.

Parameters

• cert (DNSCryptCert) – The certificate to add to the context

• key (DNSCryptPrivateKey) – The private key corresponding to the certificate

• active (bool) – Whether the certificate should be advertised to clients. Default is
true

:generateAndLoadInMemoryCertificate(keyfile, serial, begin, end[, version])
Generate a new resolver key and the associated certificate in-memory, sign it with the provided
provider key, and add it to the context

Parameters

• keyfile (string) – Path to the provider key file to use

• serial (int) – The serial number of the certificate

• begin (int) – Unix timestamp from when the certificate is valid

• end (int) – Unix timestamp from until the certificate is valid

• version (DNSCryptExchangeVersion) – The exchange version to use. Pos-
sible values are DNSCryptExchangeVersion::VERSION1 (default, X25519-
XSalsa20Poly1305) and DNSCryptExchangeVersion::VERSION2 (X25519-
XChacha20Poly1305)

:getCertificate(index)→ DNSCryptCert
Return the certificate with index index.

Parameters index (int) – The index of the certificate, starting at 0

214 Chapter 19. Reference Guides

dnsdist

:getCertificatePair(index)→ DNSCryptCertificatePair
Return the certificate pair with index index.

Parameters index (int) – The index of the certificate, starting at 0

:getCertificatePair(index)→ table of DNSCryptCertificatePair
Return a table of certificate pairs.

:getProviderName()→ string
Return the provider name

:loadNewCertificate(certificate, keyfile[, active])
Load a new certificate and the corresponding private key. If active is false, the certificate will not be
advertised to clients but can still be used to answer queries tied to it.

Parameters

• certificate (string) – Path to a certificate file

• keyfile (string) – Path to a the corresponding key file

• active (bool) – Whether the certificate should be marked as active. Default is true

:markActive(serial)
Mark the certificate with serial serial as active, meaning it will be advertised to clients.

Parameters serial (int) – The serial of the number to mark as active

:markInactive(serial)
Mark the certificate with serial serial as inactive, meaning it will not be advertised to clients but can
still be used to answer queries tied to this certificate.

Parameters serial (int) – The serial of the number to mark as inactive

:printCertificates()
Print all the certificates.

:reloadCertificates()
New in version 1.6.0.

Reload the current TLS certificate and key pairs.

:removeInactiveCertificate(serial)
Remove the certificate with serial serial. It will not be possible to answer queries tied to this certificate,
so it should have been marked as inactive for a certain time before that. Active certificates should be
marked as inactive before they can be removed.

Parameters serial (int) – The serial of the number to remove

19.16 DNS Parser

Since 1.8.0, dnsdist contains a limited DNS parser class that can be used to inspect the content of DNS queries
and responses in Lua.

The first step is to get the content of the DNS payload into a Lua string, for example us-
ing DNSQuestion:getContent(), or DNSResponse:getContent(), and then to create a
DNSPacketOverlay object:

function dumpPacket(dq)
local packet = dq:getContent()
local overlay = newDNSPacketOverlay(packet)
print(overlay.qname)
print(overlay.qtype)
print(overlay.qclass)
local count = overlay:getRecordsCountInSection(DNSSection.Answer)

(continues on next page)

19.16. DNS Parser 215

dnsdist

(continued from previous page)

print(count)
for idx=0, count-1 do
local record = overlay:getRecord(idx)
print(record.name)
print(record.type)
print(record.class)
print(record.ttl)
print(record.place)
print(record.contentLength)
print(record.contentOffset)

end
return DNSAction.None

end

addAction(AllRule(), LuaAction(dumpPacket))

newDNSPacketOverlay(packet)→ DNSPacketOverlay
New in version 1.8.0.

Returns a DNSPacketOverlay

Parameters packet (str) – The DNS payload

19.16.1 DNSPacketOverlay

class DNSPacketOverlay
New in version 1.8.0.

The DNSPacketOverlay object has several attributes, all of them read-only:

qname
The qname of this packet, as a DNSName objects.

qtype
The type of the query in this packet.

qclass
The class of the query in this packet.

dh

It also supports the following methods:

:getRecordsCountInSection(section)→ int
Returns the number of records in the ANSWER (1), AUTHORITY (2) and ADDITIONAL (3) DNS
Packet Sections of this packet. The number of records in the QUESTION (0) is always set to 0, look
at the dnsheader if you need the actual qdcount.

Parameters section (int) – The section, see above

:getRecord(idx)→ DNSRecord
Get the record at the requested position. The records in the QUESTION sections are not taken into
account, so the first record in the answer section would be at position 0.

Parameters idx (int) – The position of the requested record

19.17 DNSRecord object

class DNSRecord
New in version 1.8.0.

216 Chapter 19. Reference Guides

dnsdist

This object represents an unparsed DNS record, as returned by the DNSPacketOverlay class. It has several
attributes, all of them read-only:

name
The name of this record, as a DNSName objects.

type
The type of this record.

class
The class of this record.

ttl
The TTL of this record.

place
The place (section) of this record.

contentLength
The length, in bytes, of the rdata content of this record.

contentOffset
The offset since the beginning of the DNS payload, in bytes, at which the rdata content of this record
starts.

19.18 Protobuf Logging Reference

newRemoteLogger(address[, timeout=2[, maxQueuedEntries=100[, reconnectWaitTime=1]]])
Create a Remote Logger object, to use with RemoteLogAction() and
RemoteLogResponseAction().

Parameters

• address (string) – An IP:PORT combination where the logger is listening

• timeout (int) – TCP connect timeout in seconds

• maxQueuedEntries (int) – Queue this many messages before dropping new ones
(e.g. when the remote listener closes the connection)

• reconnectWaitTime (int) – Time in seconds between reconnection attempts

class DNSDistProtoBufMessage
This object represents a single protobuf message as emitted by dnsdist.

:addResponseRR(name, type, class, ttl, blob)
Add a response RR to the protobuf message.

Parameters

• name (string) – The RR name.

• type (int) – The RR type.

• class (int) – The RR class.

• ttl (int) – The RR TTL.

• blob (string) – The RR binary content.

:setBytes(bytes)
Set the size of the query

Parameters bytes (int) – Number of bytes in the query.

:setEDNSSubnet(netmask)
Set the EDNS Subnet to netmask.

19.18. Protobuf Logging Reference 217

dnsdist

Parameters netmask (string) – The netmask to set to.

:setQueryTime(sec, usec)
In a response message, set the time at which the query has been received.

Parameters

• sec (int) – Unix timestamp when the query was received.

• usec (int) – The microsecond the query was received.

:setQuestion(name, qtype, qclass)
Set the question in the protobuf message.

Parameters

• name (DNSName) – The qname of the question

• qtype (int) – The qtype of the question

• qclass (int) – The qclass of the question

:setProtobufResponseType(sec, usec)
Change the protobuf response type from a query to a response, and optionally set the query time.

Parameters

• sec (int) – Optional query time in seconds.

• usec (int) – Optional query time in additional micro-seconds.

:setRequestor(address[, port])
Changed in version 1.5.0: port optional parameter added.

Set the requestor’s address.

Parameters

• address (ComboAddress) – The address to set to

• port (int) – The requestor source port

:setRequestorFromString(address[, port])
Changed in version 1.5.0: port optional parameter added.

Set the requestor’s address from a string.

Parameters

• address (string) – The address to set to

• port (int) – The requestor source port

:setResponder(address[, port])
Changed in version 1.5.0: port optional parameter added.

Set the responder’s address.

Parameters

• address (ComboAddress) – The address to set to

• port (int) – The responder port

:setResponderFromString(address[, port])
Changed in version 1.5.0: port optional parameter added.

Set the responder’s address.

Parameters

• address (string) – The address to set to

• port (int) – The responder port

218 Chapter 19. Reference Guides

dnsdist

:setResponseCode(rcode)
Set the response code of the query.

Parameters rcode (int) – The response code of the answer

:setServerIdentity(id)
Set the server identify field.

Parameters id (string) – The server ID

:setTag(value)
Add a tag to the list of tags.

Parameters value (string) – The tag value

:setTagArray(valueList)
Add a list of tags.

Parameters tags (table) – A list of tags as strings

:setTime(sec, usec)
Set the time at which the query or response has been received.

Parameters

• sec (int) – Unix timestamp when the query was received.

• usec (int) – The microsecond the query was received.

:toDebugString()→ string
Return an string containing the content of the message

19.19 dnstap Logging Reference

dnstap is a flexible, structured binary log format for DNS software. Reader implementations in various languages
exist.

dnsdist supports dnstap since version 1.3.0.

Canonically, dnstap is sent over a FrameStream socket, either a local AF_UNIX (see
newFrameStreamUnixLogger()) or a TCP/IP socket (see newFrameStreamTcpLogger()). As
an extension, dnsdist can send raw dnstap protobuf messages over a newRemoteLogger().

To use FrameStream transport, dnsdist must have been built with libfstrm.

newFrameStreamUnixLogger(path[, options])
Changed in version 1.5.0: Added the optional parameter options.

Create a Frame Stream Logger object, to use with DnstapLogAction() and
DnstapLogResponseAction(). This version will log to a local AF_UNIX socket.

Parameters

• path (string) – A local AF_UNIX socket path. Note that most platforms have a
rather short limit on the length.

• options (table) – A table with key: value pairs with options.

The following options apply to the settings of the framestream library. Refer to the documentation of that
library for the default and allowed values for these options, as well as their exact descriptions. For all these
options, absence or a zero value has the effect of using the library-provided default value.

• bufferHint=0: unsigned

• flushTimeout=0: unsigned

• inputQueueSize=0: unsigned

• outputQueueSize=0: unsigned

19.19. dnstap Logging Reference 219

http://dnstap.info

dnsdist

• queueNotifyThreshold=0: unsigned

• reopenInterval=0: unsigned

newFrameStreamTcpLogger(address[, options])
Changed in version 1.5.0: Added the optional parameter options.

Create a Frame Stream Logger object, to use with DnstapLogAction() and
DnstapLogResponseAction(). This version will log to a possibly remote TCP socket. Needs
tcp_writer support in libfstrm.

Parameters

• address (string) – An IP:PORT combination where the logger will connect to.

• options (table) – A table with key: value pairs with options.

The following options apply to the settings of the framestream library. Refer to the documentation of that
library for the default and allowed values for these options, as well as their exact descriptions. For all these
options, absence or a zero value has the effect of using the library-provided default value.

• bufferHint=0: unsigned

• flushTimeout=0: unsigned

• inputQueueSize=0: unsigned

• outputQueueSize=0: unsigned

• queueNotifyThreshold=0: unsigned

• reopenInterval=0: unsigned

class DnstapMessage
This object represents a single dnstap message as emitted by dnsdist.

classmethod DnstapMessage:setExtra(extraData)
Sets the dnstap “extra” field.

Parameters extraData (string) – Extra data stuffed into the dnstap “extra” field.

classmethod DnstapMessage:toDebugString()→ string
Return a string containing the content of the message

19.20 Carbon export

carbonServer(serverIP[, ourname[, interval[, namespace[, instance]]]])
Exort statistics to a Carbon / Graphite / Metronome server.

Parameters

• serverIP (string) – Indicates the IP address where the statistics should be sent

• ourname (string) – An optional string specifying the hostname that should be used

• interval (int) – An optional unsigned integer indicating the interval in seconds
between exports

• namespace (string) – An optional string specifying the namespace name that
should be used

• instance (string) – An optional string specifying the instance name that should
be used

220 Chapter 19. Reference Guides

dnsdist

19.21 SNMP reporting

snmpAgent(enableTraps[, daemonSocket])
Enable SNMP support.

Parameters

• enableTraps (bool) – Indicates whether traps should be sent

• daemonSocket (string) – A string specifying how to connect to the daemon agent.
This is a file path to a unix socket, but e.g. tcp:localhost:705 can be used as well.
By default, SNMP agent’s default socket is used.

sendCustomTrap(message)
Send a custom SNMP trap from Lua.

Parameters message (string) – The message to include in the sent trap

19.22 Tuning related functions

setDoHDownstreamCleanupInterval(interval)
New in version 1.7.0.

Set how often, in seconds, the outgoing DoH connections to backends of a given worker thread are scanned
to expunge the ones that are no longer usable. The default is 60 so once per minute and per worker thread.

Parameters interval (int) – The interval in seconds.

setDoHDownstreamMaxIdleTime(max)
New in version 1.7.0.

Set how long, in seconds, an outgoing DoH connection to a backend might stay idle before being closed.
The default is 300 so 5 minutes.

Parameters max (int) – The maximum time in seconds.

setMaxIdleDoHConnectionsPerDownstream(max)
New in version 1.7.0.

Set the maximum number of inactive DoH connections to a backend cached by each DoH worker thread.
These connections can be reused when a new query comes in, instead of having to establish a new connec-
tion. dnsdist regularly checks whether the other end has closed any cached connection, closing them in that
case.

Parameters max (int) – The maximum number of inactive connections to keep. Default is 10,
so 10 connections per backend and per DoH worker thread.

setMaxCachedTCPConnectionsPerDownstream(max)
New in version 1.6.0.

Set the maximum number of inactive TCP connections to a backend cached by each TCP worker thread.
These connections can be reused when a new query comes in, instead of having to establish a new connec-
tion. dnsdist regularly checks whether the other end has closed any cached connection, closing them in that
case.

Parameters max (int) – The maximum number of inactive connections to keep. Default is 10,
so 10 connections per backend and per TCP worker thread.

setMaxTCPClientThreads(num)
Changed in version 1.6.0: Before 1.6.0 the default value was 10.

Changed in version 1.7.0: The default value has been set back to 10.

19.21. SNMP reporting 221

dnsdist

Set the maximum of TCP client threads, handling TCP connections. Before 1.4.0 a TCP thread could only
handle a single incoming TCP connection at a time, while after 1.4.0 it can handle a larger number of them
simultaneously.

Note that before 1.6.0 the TCP worker threads were created at runtime, adding a new thread when the
existing ones seemed to struggle with the load, until the maximum number of threads had been reached.
Starting with 1.6.0 the configured number of worker threads are immediately created at startup.

In 1.6.0 the default value was at least 10 TCP workers, but could be more if there is more than 10 TCP
listeners (added via addDNSCryptBind(), addLocal(), or addTLSLocal()). In that last case
there would have been as many TCP workers as TCP listeners. This led to issues in setups with a large
number of TCP listeners and was therefore reverted back to 10 in 1.7.0.

Parameters num (int) – The number of TCP worker threads.

setMaxTCPConnectionDuration(num)
Set the maximum duration of an incoming TCP connection, in seconds. 0 (the default) means unlimited

Parameters num (int) –

setMaxTCPConnectionsPerClient(num)
Set the maximum number of TCP connections per client. 0 (the default) means unlimited

Parameters num (int) –

setMaxTCPQueriesPerConnection(num)
Set the maximum number of queries in an incoming TCP connection. 0 (the default) means unlimited

Parameters num (int) –

setMaxTCPQueuedConnections(num)
Changed in version 1.6.0: Before 1.6.0 the default value was 1000 on all systems.

Set the maximum number of TCP connections queued (waiting to be picked up by a client thread), defaults
to 1000 (10000 on Linux since 1.6.0). 0 means unlimited

Parameters num (int) –

setMaxUDPOutstanding(num)
Changed in version 1.4.0: Before 1.4.0 the default value was 10240

Set the maximum number of outstanding UDP queries to a given backend server. This can only be set at
configuration time and defaults to 65535 (10240 before 1.4.0)

Parameters num (int) –

setCacheCleaningDelay(num)
Set the interval in seconds between two runs of the cache cleaning algorithm, removing expired entries.
Default is every 60s

Parameters num (int) –

setCacheCleaningPercentage(num)
Set the percentage of the cache that the cache cleaning algorithm will try to free by removing expired entries.
By default (100), all expired entries are removed

Parameters num (int) –

setOutgoingDoHWorkerThreads(num)
New in version 1.7.0.

Set the number of worker threads to use for outgoing DoH. That number defaults to 0 but is automatically
raised to 1 when DoH is enabled on at least one backend.

setStaleCacheEntriesTTL(num)
Allows using cache entries expired for at most n seconds when no backend available to answer for a query

Parameters num (int) –

222 Chapter 19. Reference Guides

dnsdist

setTCPDownstreamCleanupInterval(interval)
New in version 1.6.0.

Set how often, in seconds, the outgoing TCP connections to backends of a given worker thread are scanned
to expunge the ones that are no longer usable. The default is 60 so once per minute and per worker thread.

Parameters interval (int) – The interval in seconds.

setDoHDownstreamMaxIdleTime(max)
New in version 1.7.0.

Set how long, in seconds, an outgoing DoH connection to a backend might stay idle before being closed.
The default is 300 so 5 minutes.

Parameters max (int) – The maximum time in seconds.

setRandomizedIdsOverUDP(val)
New in version 1.8.0.

Setting this parameter to true (default is false) will randomize the IDs in outgoing UDP queries, at a small
performance cost, ignoring the setMaxUDPOutstanding() value. This is only useful if the path be-
tween dnsdist and the backend is not trusted and the ‘TCP-only’, DNS over TLS or DNS over HTTPS
transports cannot be used. See also setRandomizedOutgoingSockets(). The default is to use a
linearly increasing counter from 0 to 65535, wrapping back to 0 when necessary.

setRandomizedOutgoingSockets(val)
New in version 1.8.0.

Setting this parameter to true (default is false) will randomize the outgoing socket used when forwarding
a query to a backend. The default is to use a round-robin mechanism to select the outgoing socket. This
requires configuring the backend to use more than one outgoing socket via the sockets parameter of
newServer() to be of any use, and only makes sense if the path between dnsdist and the backend is
not trusted and the ‘TCP-only’, DNS over TLS or DNS over HTTPS transports cannot be used. See also
setRandomizedIdsOverUDP().

setTCPInternalPipeBufferSize(size)
New in version 1.6.0.

Set the size in bytes of the internal buffer of the pipes used internally to distribute connections to TCP (and
DoT) workers threads. Requires support for F_SETPIPE_SZ which is present in Linux since 2.6.35. The
actual size might be rounded up to a multiple of a page size. 0 means that the OS default size is used. The
default value is 0, except on Linux where it is 1048576 since 1.6.0.

Parameters size (int) – The size in bytes.

setTCPUseSinglePipe(val)
Deprecated since version 1.6.0.

Whether the incoming TCP connections should be put into a single queue instead of using per-thread queues.
Defaults to false. That option was useful before 1.4.0 when a single TCP connection could block a TCP
worker thread, but should not be used in recent versions where the per-thread queues model avoids waking
up all idle workers when a new connection arrives. This option will be removed in 1.7.0.

Parameters val (bool) –

setTCPRecvTimeout(num)
Set the read timeout on TCP connections from the client, in seconds. Defaults to 2

Parameters num (int) –

setTCPSendTimeout(num)
Set the write timeout on TCP connections from the client, in seconds. Defaults to 2

Parameters num (int) –

setUDPMultipleMessagesVectorSize(num)
Set the maximum number of UDP queries messages to accept in a single recvmmsg() call. Only available

19.22. Tuning related functions 223

dnsdist

if the underlying OS support recvmmsg() with the MSG_WAITFORONE option. Defaults to 1, which
means only query at a time is accepted, using recvmsg() instead of recvmmsg().

Parameters num (int) – maximum number of UDP queries to accept

setUDPSocketBufferSizes(recv, send)
New in version 1.7.0.

Set the size of the receive (SO_RCVBUF) and send (SO_SNDBUF) buffers for incoming UDP sockets. On
Linux the default values correspond to net.core.rmem_default and net.core.wmem_default
, and the maximum values are restricted by net.core.rmem_max and net.core.wmem_max. Since
1.9.0, on Linux, dnsdist will automatically try to raise the buffer sizes to the maximum value allowed by the
system (net.core.rmem_max and net.core.wmem_max) if setUDPSocketBufferSizes() is
not set.

Parameters

• recv (int) – SO_RCVBUF value. Default is 0, meaning the system value will be kept.

• send (int) – SO_SNDBUF value. Default is 0, meaning the system value will be kept.

setUDPTimeout(num)
Set the maximum time dnsdist will wait for a response from a backend over UDP, in seconds. Defaults to 2

Parameters num (int) –

19.23 Key Value Store functions and objects

These are all the functions, objects and methods related to the CDB and LMDB key value stores.

A lookup into a key value store can be done via the KeyValueStoreLookupRule() rule or the
KeyValueStoreLookupAction() action, using the usual selectors to match the incoming queries for which
the lookup should be done.

The first step is to get a KeyValueStore object via one of the following functions:

• newCDBKVStore() for a CDB database ;

• newLMDBKVStore() for a LMDB one.

Then the key used for the lookup can be selected via one of the following functions:

• the exact qname with KeyValueLookupKeyQName() ;

• a suffix match via KeyValueLookupKeySuffix(), meaning that several lookups will be done, remov-
ing one label from the qname at a time, until a match has been found or there is no label left ;

• the source IP, in network byte order, with KeyValueLookupKeySourceIP() ;

• the value of an existing tag with KeyValueLookupKeyTag().

For example, to do a suffix-based lookup into a LMDB KVS database, the following rule can be used:

> kvs = newLMDBKVStore('/path/to/lmdb/database', 'database name')
> addAction(AllRule(), KeyValueStoreLookupAction(kvs, KeyValueLookupKeySuffix(),
→˓'kvs-suffix-result'))

For a query whose qname is “sub.domain.powerdns.com.”, and for which only the “\8powerdns\3com\0” key exists
in the database, this would result in the following lookups:

• \3sub\6domain\8powerdns\3com\0

• \6domain\8powerdns\3com\0

• \8powerdns\3com\0

224 Chapter 19. Reference Guides

dnsdist

Then a match is found for the last key, and the corresponding value is stored into the ‘kvs-suffix-result’ tag. This
tag can now be used in subsequent rules to take an action based on the result of the lookup. Note that the tag is
also created when the key has not been found, but the content of the tag is empty.

> addAction(TagRule('kvs-suffix-result', 'this is the value obtained from the
→˓lookup'), SpoofAction('2001:db8::1'))

If the value found in the LMDB database for the key ‘\8powerdns\3com\0’ was ‘this is the value obtained from
the lookup’, then the query is immediately answered with a AAAA record.

class KeyValueStore
New in version 1.4.0.

Represents a Key Value Store

:lookup(key[, wireFormat])
Does a lookup into the corresponding key value store, and return the result as a string. The key can
be a ComboAddress obtained via the newCA(), a DNSName obtained via the newDNSName()
function, or a raw string.

Parameters

• DNSName or string key (ComboAddress,) – The key to look up

• wireFormat (bool) – If the key is DNSName, whether to use to do the lookup in
wire format (default) or in plain text

:lookupSuffix(key[, minLabels[, wireFormat]])
Does a suffix-based lookup into the corresponding key value store, and return the result as a string.
The key should be a DNSName object obtained via the newDNSName() function, and several lookups
will be done, removing one label from the name at a time until a match has been found or there is no
label left. If minLabels is set to a value larger than 0 the lookup will only be done as long as there
is at least minLabels remaining. For example if the initial domain is “sub.powerdns.com.” and
minLabels is set to 2, lookups will only be done for “sub.powerdns.com.” and “powerdns.com.”.

Parameters

• key (DNSName) – The name to look up

• minLabels (int) – The minimum number of labels to do a lookup for. Default is 0
which means unlimited

• wireFormat (bool) – Whether to do the lookup in wire format (default) or in plain
text

:reload()
Reload the database if this is supported by the underlying store. As of 1.4.0, only CDB stores can be
reloaded, and this method is a no-op for LMDB stores.

KeyValueLookupKeyQName([wireFormat])→ KeyValueLookupKey
New in version 1.4.0.

Return a new KeyValueLookupKey object that, when passed to KeyValueStoreLookupAction() or
KeyValueStoreLookupRule(), will return the qname of the query in DNS wire format.

Parameters wireFormat (bool) – Whether to do the lookup in wire format (default) or in
plain text

KeyValueLookupKeySourceIP([v4mask[, v6mask]])→ KeyValueLookupKey
New in version 1.4.0.

Changed in version 1.5.0: Optional parameters v4mask and v6mask added.

Changed in version 1.7.0: Optional parameter includePort added.

Return a new KeyValueLookupKey object that, when passed to KeyValueStoreLookupAction() or
KeyValueStoreLookupRule(), will return the source IP of the client in network byte-order.

19.23. Key Value Store functions and objects 225

dnsdist

Parameters

• v4mask (int) – Mask applied to IPv4 addresses. Default is 32 (the whole address)

• v6mask (int) – Mask applied to IPv6 addresses. Default is 128 (the whole address)

• includePort (int) – Whether to append the port (in network byte-order) after the
address. Default is false

KeyValueLookupKeySuffix([minLabels[, wireFormat]])→ KeyValueLookupKey
New in version 1.4.0.

Return a new KeyValueLookupKey object that, when passed to KeyValueStoreLookupAction() or
KeyValueStoreLookupRule(), will return a vector of keys based on the labels of the qname in DNS
wire format or plain text. For example if the qname is sub.domain.powerdns.com. the following keys will
be returned:

• \3sub\6domain\8powerdns\3com\0

• \6domain\8powerdns\3com\0

• \8powerdns\3com\0

• \3com\0

• \0

If minLabels is set to a value larger than 0 the lookup will only be done as long as there is at least
minLabels remaining. Taking back our previous example, it means only the following keys will be
returned if minLabels is set to 2;

• \3sub\6domain\8powerdns\3com\0

• \6domain\8powerdns\3com\0

• \8powerdns\3com\0

Parameters

• minLabels (int) – The minimum number of labels to do a lookup for. Default is 0
which means unlimited

• wireFormat (bool) – Whether to do the lookup in wire format (default) or in plain
text

KeyValueLookupKeyTag(tagName)→ KeyValueLookupKey
New in version 1.4.0.

Return a new KeyValueLookupKey object that, when passed to KeyValueStoreLookupAction(),
will return the value of the corresponding tag for this query, if it exists.

Parameters tagName (str) – The name of the tag.

newCDBKVStore(filename, refreshDelay)→ KeyValueStore
New in version 1.4.0.

Return a new KeyValueStore object associated to the corresponding CDB database. The modification time
of the CDB file will be checked every ‘refreshDelay’ second and the database re-opened if needed.

Parameters

• filename (string) – The path to an existing CDB database

• refreshDelays (int) – The delay in seconds between two checks of the database
modification time. 0 means disabled

newLMDBKVStore(filename, dbName[, noLock])→ KeyValueStore
New in version 1.4.0.

Changed in version 1.7.0: Added the optional parameter noLock.

226 Chapter 19. Reference Guides

dnsdist

Return a new KeyValueStore object associated to the corresponding LMDB database. The database
must have been created with the MDB_NOSUBDIR flag. Since 1.7.0, the database is opened with the
MDB_READONLY flag, and optionally with MDB_NOLOCK if noLock is set to true.

Parameters

• filename (string) – The path to an existing LMDB database created with
MDB_NOSUBDIR

• dbName (string) – The name of the database to use

• noLock (bool) – Whether to open the database with the MDB_NOLOCK flag. Default
is false

19.24 Logging

There are some functions to create log output.

errlog(line)
Writes a error line.

Parameters line (str) – The line to write.

warnlog(line)
Writes a warning line.

Parameters line (str) – The line to write.

infolog(line)
Writes an info line.

Parameters line (str) – The line to write.

vinfolog(line)
New in version 1.8.0.

Writes an info line if dnsdist is running in verbose (debug) mode.

Parameters line (str) – The line to write.

19.25 Webserver-related objects

class WebRequest
Represent a HTTP query, whose attributes are read-only.

body
The body of this query, as a string.

getvars
The GET parameters of this query, as a table whose keys and values are strings.

headers
The HTTP headers of this query, as a table whose keys and values are strings.

method
The method of this query, as a string.

path
The path of this query, as a string.

postvars
The POST parameters of this query, as a table whose keys and values are strings.

version
The HTTP version of this query, as an integer.

19.24. Logging 227

dnsdist

class WebResponse
Represent a HTTP response.

body
The body of this response, as a string.

headers
The HTTP headers of this response, as a table whose keys and values are strings.

status
The HTTP status code of this response, as an integer.

19.26 Rules management

19.26.1 Incoming queries

For Rules related to the incoming query:

addAction(DNSrule, action[, options])
Changed in version 1.6.0: Added name to the options.

Changed in version 1.9.0: Passing a string or list of strings instead of a DNSRule is deprecated, use
NetmaskGroupRule() or QNameSuffixRule() instead

Add a Rule and Action to the existing rules. If a string (or list of) is passed as the first parameter instead
of a DNSRule, it behaves as if the string or list of strings was passed to NetmaskGroupRule() or
SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule(). Before 1.9.0 it was also possible to pass a string (or list
of strings) but doing so is now deprecated.

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

clearRules()
Remove all current rules.

getAction(n)→ DNSDistRuleAction
Returns the DNSDistRuleAction associated with rule n.

Parameters n (int) – The rule number

getRule(selector)→ DNSDistRuleAction
New in version 1.9.0.

Return the rule corresponding to the selector, if any. The selector can be the position of the rule in the list,
as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvRule(from, to)
Move rule from to a position where it is in front of to. to can be one larger than the largest rule, in which
case the rule will be moved to the last position.

Parameters

228 Chapter 19. Reference Guides

dnsdist

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvRuleToTop()
New in version 1.6.0.

This function moves the last rule to the first position. Before 1.6.0 this was handled by topRule().

setRules(rules)
Replace the current rules with the supplied list of pairs of DNS Rules and DNS Actions (see
newRuleAction())

Parameters rules ([RuleAction]) – A list of RuleActions

showRules([options])
Show all defined rules for queries, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

topRule()
Changed in version 1.6.0: Replaced by mvRuleToTop()

Before 1.6.0 this function used to move the last rule to the first position, which is now handled by
mvRuleToTop().

rmRule(id)
Changed in version 1.6.0: id can now be a string representing the name of the rule.

Remove rule id.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

19.26.2 Cache misses

For Rules related to the incoming query after a cache miss:

Warning: While all selectors and actions are available, some actions will no longer be honored at this point.
For example changing the backend pool will not trigger a second cache-lookup. Switching from a backend pool
that has EDNS Client Subnet enabled to one that doesn’t will result in the EDNS Client Subnet corresponding
to the initial server pool to be added to the query.

addCacheMissAction(DNSrule, action[, options])
New in version 1.10.

Add a Rule and Action to the existing cache miss rules. If a string (or list of) is passed as the first parameter
instead of a DNSRule, it behaves as if the string or list of strings was passed to NetmaskGroupRule()
or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule().

• action – The action to take

• options (table) – A table with key: value pairs with options.

19.26. Rules management 229

dnsdist

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

clearCacheMissRules()
New in version 1.10.

Remove all current cache miss rules.

getCacheMissAction(n)→ DNSDistRuleAction
New in version 1.10.

Returns the DNSDistRuleAction associated with cache miss rule n.

Parameters n (int) – The rule number

getCacheMissRule(selector)→ DNSDistRuleAction
New in version 1.10.

Return the cache miss rule corresponding to the selector, if any. The selector can be the position of the rule
in the list, as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvCacheMissRule(from, to)
New in version 1.10.

Move cache miss rule from to a position where it is in front of to. to can be one larger than the largest
rule, in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvCacheMissRuleToTop()
New in version 1.10.

This function moves the last cache miss rule to the first position.

setCacheMissRules(rules)
New in version 1.10.

Replace the current cache miss rules with the supplied list of pairs of DNS Rules and DNS Actions (see
newRuleAction())

Parameters rules ([RuleAction]) – A list of RuleActions

showCacheMissRules([options])
New in version 1.10.

Show all defined cache miss rules for queries, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

rmCacheMissRule(id)
New in version 1.10.

Remove rule id.

Parameters id (int) – The position of the cache miss rule to remove if id is numerical, its
UUID or name otherwise

230 Chapter 19. Reference Guides

dnsdist

19.26.3 Responses

For Rules related to responses:

addResponseAction(DNSRule, action[, options])
Changed in version 1.6.0: Added name to the options.

Changed in version 1.9.0: Passing a string or list of strings instead of a DNSRule is deprecated, use
NetmaskGroupRule() or QNameSuffixRule() instead

Add a Rule and Action for responses to the existing rules. If a string (or list of) is passed as the first parameter
instead of a DNSRule, it behaves as if the string or list of strings was passed to NetmaskGroupRule()
or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule(). Before 1.9.0 it was also possible to pass a string (or list
of strings) but doing so is now deprecated.

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

clearResponseRules()
New in version 1.10.

Remove all current response rules.

getResponseRule(selector)→ DNSDistResponseRuleAction
New in version 1.9.0.

Return the response rule corresponding to the selector, if any. The selector can be the position of the rule in
the list, as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvResponseRule(from, to)
Move response rule from to a position where it is in front of to. to can be one larger than the largest rule,
in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvResponseRuleToTop()
New in version 1.6.0.

This function moves the last response rule to the first position. Before 1.6.0 this was handled by
topResponseRule().

rmResponseRule(id)
Changed in version 1.6.0: id can now be a string representing the name of the rule.

Remove response rule id.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

showResponseRules([options])
Show all defined response rules, optionally displaying their UUIDs.

19.26. Rules management 231

dnsdist

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

topResponseRule()
Changed in version 1.6.0: Replaced by mvResponseRuleToTop()

Before 1.6.0 this function used to move the last response rule to the first position, which is now handled by
mvResponseRuleToTop().

19.26.4 Cache hits

Functions for manipulating Cache Hit Response Rules:

addCacheHitResponseAction(DNSRule, action[, options])
Changed in version 1.6.0: Added name to the options.

Changed in version 1.9.0: Passing a string or list of strings instead of a DNSRule is deprecated, use
NetmaskGroupRule() or QNameSuffixRule() instead

Add a Rule and ResponseAction for Cache Hits to the existing rules. If a string (or list of) is passed
as the first parameter instead of a DNSRule, it behaves as if the string or list of strings was passed to
NetmaskGroupRule() or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule(). Before 1.9.0 it was also possible to pass a string (or list
of strings) but doing so is now deprecated.

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

clearCacheHitResponseRules()
New in version 1.10.

Remove all current cache-hit response rules.

getCacheHitResponseRule(selector)→ DNSDistResponseRuleAction
New in version 1.9.0.

Return the cache-hit response rule corresponding to the selector, if any. The selector can be the position of
the rule in the list, as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvCacheHitResponseRule(from, to)
Move cache hit response rule from to a position where it is in front of to. to can be one larger than the
largest rule, in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

232 Chapter 19. Reference Guides

dnsdist

mvCacheHitResponseRuleToTop()
New in version 1.6.0.

This function moves the last cache hit response rule to the first position. Before 1.6.0 this was handled by
topCacheHitResponseRule().

rmCacheHitResponseRule(id)
Changed in version 1.6.0: id can now be a string representing the name of the rule.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

showCacheHitResponseRules([options])
Show all defined cache hit response rules, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

topCacheHitResponseRule()
Changed in version 1.6.0: Replaced by mvCacheHitResponseRuleToTop()

Before 1.6.0 this function used to move the last cache hit response rule to the first position, which is now
handled by mvCacheHitResponseRuleToTop().

19.26.5 Cache inserted

Functions for manipulating Cache Inserted Response Rules:

addCacheInsertedResponseAction(DNSRule, action[, options])
New in version 1.8.0.

Changed in version 1.9.0: Passing a string or list of strings instead of a DNSRule is deprecated, use
NetmaskGroupRule() or QNameSuffixRule() instead

Add a Rule and ResponseAction that is executed after a cache entry has been inserted to the existing rules.
If a string (or list of) is passed as the first parameter instead of a DNSRule, it behaves as if the string or list
of strings was passed to NetmaskGroupRule() or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule(). Before 1.9.0 it was also possible to pass a string (or list
of strings) but doing so is now deprecated.

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

clearCacheInsertedResponseRules()
New in version 1.10.

Remove all current cache-inserted response rules.

getCacheInsertedResponseRule(selector)→ DNSDistResponseRuleAction
New in version 1.9.0.

19.26. Rules management 233

dnsdist

Return the cache-inserted response rule corresponding to the selector, if any. The selector can be the position
of the rule in the list, as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvCacheInsertedResponseRule(from, to)
New in version 1.8.0.

Move cache inserted response rule from to a position where it is in front of to. to can be one larger than
the largest rule, in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvCacheInsertedResponseRuleToTop()
New in version 1.8.0.

This function moves the last cache inserted response rule to the first position.

rmCacheInsertedResponseRule(id)
New in version 1.8.0.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

showCacheInsertedResponseRules([options])
New in version 1.8.0.

Show all defined cache inserted response rules, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

19.26.6 Self-answered responses

Functions for manipulating Self-Answered Response Rules:

addSelfAnsweredResponseAction(DNSRule, action[, options])
Changed in version 1.6.0: Added name to the options.

Changed in version 1.9.0: Passing a string or list of strings instead of a DNSRule is deprecated, use
NetmaskGroupRule() or QNameSuffixRule() instead

Add a Rule and Action for Self-Answered queries to the existing rules. If a string (or list of) is passed
as the first parameter instead of a DNSRule, it behaves as if the string or list of strings was passed to
NetmaskGroupRule() or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule(). Before 1.9.0 it was also possible to pass a string (or list
of strings) but doing so is now deprecated.

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

234 Chapter 19. Reference Guides

dnsdist

• name: string - Name to assign to the new rule.

clearSelfAnsweredResponseRules()
New in version 1.10.

Remove all current self-answered response rules.

getSelfAnsweredResponseRule(selector)→ DNSDistResponseRuleAction
New in version 1.9.0.

Return the self-answered response rule corresponding to the selector, if any. The selector can be the position
of the rule in the list, as an integer, its name as a string or its UUID as a string as well.

Parameters or str selector (int) – The position in the list, name or UUID of the rule
to return.

mvSelfAnsweredResponseRule(from, to)
Move self answered response rule from to a position where it is in front of to. to can be one larger than
the largest rule, in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvSelfAnsweredResponseRuleToTop()
New in version 1.6.0.

This function moves the last self-answered response rule to the first position. Before 1.6.0 this was handled
by topSelfAnsweredResponseRule().

rmSelfAnsweredResponseRule(id)
Changed in version 1.6.0: id can now be a string representing the name of the rule.

Remove self answered response rule id.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

showSelfAnsweredResponseRules([options])
Show all defined self answered response rules, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

topSelfAnsweredResponseRule()
Changed in version 1.6.0: Replaced by mvSelfAnsweredResponseRuleToTop()

Before 1.6.0 this function used to move the last self-answered response rule to the first position, which is
now handled by mvSelfAnsweredResponseRuleToTop().

Move the last self answered response rule to the first position.

19.26.7 XFR

Functions for manipulating zone transfer (AXFR, IXFR) Response Rules:

Note: Please remember that a zone transfer (XFR) can and will often contain several response packets to a single
query packet.

19.26. Rules management 235

dnsdist

Warning: While almost all existing selectors and Response actions should be usable from the XFR response
rules, it is strongly advised to only inspect the content of XFR response packets, and not modify them. Logging
the content of response packets can be done via:

• DnstapLogResponseAction()

• LogResponseAction()

• RemoteLogResponseAction()

addXFRResponseAction(DNSRule, action[, options])
New in version 1.10.

Add a Rule and ResponseAction for zone transfers (XFR) to the existing rules. If a string (or list of) is
passed as the first parameter instead of a DNSRule, it behaves as if the string or list of strings was passed
to NetmaskGroupRule() or SuffixMatchNodeRule().

Parameters

• rule (DNSrule) – A DNSRule, e.g. an AllRule(), or a compounded bunch of
rules using e.g. AndRule().

• action – The action to take

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

mvXFRResponseRule(from, to)
New in version 1.10.

Move XFR response rule from to a position where it is in front of to. to can be one larger than the largest
rule, in which case the rule will be moved to the last position.

Parameters

• from (int) – Rule number to move

• to (int) – Location to more the Rule to

mvXFRResponseRuleToTop()
New in version 1.10.

This function moves the last XFR response rule to the first position.

rmXFRResponseRule(id)
New in version 1.10.

Parameters id (int) – The position of the rule to remove if id is numerical, its UUID or
name otherwise

showXFRResponseRules([options])
New in version 1.10.

Show all defined XFR response rules, optionally displaying their UUIDs.

Parameters options (table) – A table with key: value pairs with display options.

Options:

• showUUIDs=false: bool - Whether to display the UUIDs, defaults to false.

• truncateRuleWidth=-1: int - Truncate rules output to truncateRuleWidth size. Defaults
to -1 to display the full rule.

236 Chapter 19. Reference Guides

dnsdist

19.26.8 Convenience Functions

makeRule(rule)
Changed in version 1.9.0: This function is deprecated, please use NetmaskGroupRule() or
QnameSuffixRule() instead

Make a NetmaskGroupRule() or a SuffixMatchNodeRule(), depending on how it is called. The
rule parameter can be a string, or a list of strings, that should contain either:

• netmasks: in which case it will behave as NetmaskGroupRule(), or

• domain names: in which case it will behave as SuffixMatchNodeRule()

Mixing both netmasks and domain names is not supported, and will result in domain names being ignored!

makeRule("0.0.0.0/0") will for example match all IPv4 traffic, makeRule({"be","nl",
"lu"}) will match all Benelux DNS traffic.

Parameters rule (string) – A string, or list of strings, to convert to a rule.

newRuleAction(rule, action[, options])
Changed in version 1.6.0: Added name to the options.

Return a pair of DNS Rule and DNS Action, to be used with setRules().

Parameters

• rule (Rule) – A Rule (see Rule selectors)

• action (Action) – The Action (see Rule Actions) to apply to the matched traffic

• options (table) – A table with key: value pairs with options.

Options:

• uuid: string - UUID to assign to the new rule. By default a random UUID is generated for each rule.

• name: string - Name to assign to the new rule.

19.27 Rule selectors

Packets can be matched by selectors, called a DNSRule.

These DNSRules be one of the following items:

• A string that is either a domain name or netmask

• A list of strings that are either domain names or netmasks

• A DNSName

• A list of DNSNames

• A (compounded) Rule

Selectors can be combined via AndRule(), OrRule() and NotRule().

AllRule()
Matches all traffic

DNSSECRule()
Matches queries with the DO flag set

DSTPortRule(port)
Matches questions received to the destination port.

Parameters port (int) – Match destination port.

19.27. Rule selectors 237

dnsdist

EDNSOptionRule(optcode)
New in version 1.4.0.

Matches queries or responses with the specified EDNS option present. optcode is specified as an integer,
or a constant such as EDNSOptionCode.ECS.

EDNSVersionRule(version)
New in version 1.4.0.

Matches queries or responses with an OPT record whose EDNS version is greater than the specified EDNS
version.

Parameters version (int) – The EDNS version to match on

ERCodeRule(rcode)
Matches queries or responses with the specified rcode. rcode can be specified as an integer or as one of
the built-in RCode. The full 16bit RCode will be matched. If no EDNS OPT RR is present, the upper 12
bits are treated as 0.

Parameters rcode (int) – The RCODE to match on

HTTPHeaderRule(name, regex)
New in version 1.4.0.

Changed in version 1.8.0: see keepIncomingHeaders on addDOHLocal()

Matches DNS over HTTPS queries with a HTTP header name whose content matches the regular ex-
pression regex. Since 1.8.0 it is necessary to set the keepIncomingHeaders option to true on
addDOHLocal() to be able to use this rule.

Parameters

• name (str) – The case-insensitive name of the HTTP header to match on

• regex (str) – A regular expression to match the content of the specified header

HTTPPathRegexRule(regex)
New in version 1.4.0.

Matches DNS over HTTPS queries with a HTTP path matching the regular expression supplied in regex.
For example, if the query has been sent to the https://192.0.2.1:443/PowerDNS?dns=. . . URL, the path
would be ‘/PowerDNS’. Only valid DNS over HTTPS queries are matched. If you want to match all HTTP
queries, see DOHFrontend:setResponsesMap() instead.

Parameters regex (str) – The regex to match on

HTTPPathRule(path)
New in version 1.4.0.

Matches DNS over HTTPS queries with a HTTP path of path. For example, if the query has
been sent to the https://192.0.2.1:443/PowerDNS?dns=. . . URL, the path would be ‘/PowerDNS’.
Only valid DNS over HTTPS queries are matched. If you want to match all HTTP queries, see
DOHFrontend:setResponsesMap() instead.

Parameters path (str) – The exact HTTP path to match on

KeyValueStoreLookupRule(kvs, lookupKey)
New in version 1.4.0.

Return true if the key returned by ‘lookupKey’ exists in the key value store refer-
enced by ‘kvs’. The store can be a CDB (newCDBKVStore()) or a LMDB database
(newLMDBKVStore()). The key can be based on the qname (KeyValueLookupKeyQName()
and KeyValueLookupKeySuffix()), source IP (KeyValueLookupKeySourceIP()) or the
value of an existing tag (KeyValueLookupKeyTag()).

Parameters

• kvs (KeyValueStore) – The key value store to query

• lookupKey (KeyValueLookupKey) – The key to use for the lookup

238 Chapter 19. Reference Guides

https://192.0.2.1:443/PowerDNS?dns=
https://192.0.2.1:443/PowerDNS?dns=

dnsdist

KeyValueStoreRangeLookupRule(kvs, lookupKey)
New in version 1.7.0.

Does a range-based lookup into the key value store referenced by ‘kvs’ using the key returned by ‘lookup-
Key’ and returns true if there is a range covering that key.

This assumes that there is a key, in network byte order, for the last element of the range (for exam-
ple 2001:0db8:ffff:ffff:ffff:ffff:ffff:ffff for 2001:db8::/32) which contains the first element of the range
(2001:0db8:0000:0000:0000:0000:0000:0000) (optionally followed by any data) as value, still in network
byte order, and that there is no overlapping ranges in the database. This requires that the underlying store
supports ordered keys, which is true for LMDB but not for CDB.

Parameters

• kvs (KeyValueStore) – The key value store to query

• lookupKey (KeyValueLookupKey) – The key to use for the lookup

LuaFFIPerThreadRule(function)
New in version 1.7.0.

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return true if the query matches, or false otherwise. If the Lua code fails, false is
returned.

The function will be invoked in a per-thread Lua state, without access to the global Lua state. All constants
(DNSQType, RCode, . . .) are available in that per-thread context, as well as all FFI functions. Objects
and their bindings that are not usable in a FFI context (DNSQuestion, DNSDistProtoBufMessage,
PacketCache, . . .) are not available.

Parameters function (string) – a Lua string returning a Lua function

LuaFFIRule(function)
New in version 1.5.0.

Invoke a Lua FFI function that accepts a pointer to a dnsdist_ffi_dnsquestion_t object, whose
bindings are defined in dnsdist-lua-ffi.hh.

The function should return true if the query matches, or false otherwise. If the Lua code fails, false is
returned.

Parameters function (string) – the name of a Lua function

LuaRule(function)
New in version 1.5.0.

Invoke a Lua function that accepts a DNSQuestion object.

The function should return true if the query matches, or false otherwise. If the Lua code fails, false is
returned.

Parameters function (string) – the name of a Lua function

MaxQPSIPRule(qps[, v4Mask[, v6Mask[, burst[, expiration[, cleanupDelay[, scanFraction[, shards]
]]]]]])

Changed in version 1.8.0: shards parameter added

Matches traffic for a subnet specified by v4Mask or v6Mask exceeding qps queries per second up to
burst allowed. This rule keeps track of QPS by netmask or source IP. This state is cleaned up regularly if
cleanupDelay is greater than zero, removing existing netmasks or IP addresses that have not been seen
in the last expiration seconds.

Parameters

• qps (int) – The number of queries per second allowed, above this number traffic is
matched

• v4Mask (int) – The IPv4 netmask to match on. Default is 32 (the whole address)

19.27. Rule selectors 239

dnsdist

• v6Mask (int) – The IPv6 netmask to match on. Default is 64

• burst (int) – The number of burstable queries per second allowed. Default is same
as qps

• expiration (int) – How long to keep netmask or IP addresses after they have last
been seen, in seconds. Default is 300

• cleanupDelay (int) – The number of seconds between two cleanups. Default is 60

• scanFraction (int) – The maximum fraction of the store to scan for expired en-
tries, for example 5 would scan at most 20% of it. Default is 10 so 10%

• shards (int) – How many shards to use, to decrease lock contention between threads.
Default is 10 and is a safe default unless a very high number of threads are used to
process incoming queries

MaxQPSRule(qps)
Matches traffic not exceeding this qps limit. If e.g. this is set to 50, starting at the 51st query of the current
second traffic stops being matched. This can be used to enforce a global QPS limit.

Parameters qps (int) – The number of queries per second allowed, above this number the
traffic is not matched anymore

NetmaskGroupRule(nmg[, src[, quiet]])
Changed in version 1.4.0: quiet parameter added

Changed in version 1.9.0: The nmg parameter now accepts a string or a list of strings in addition to a
class:NetmaskGroup object.

Matches traffic from/to the network range specified in the nmg, which can be a string, a list of strings, or a
NetmaskGroup object created via newNMG().

Set the src parameter to false to match nmg against destination address instead of source address. This can
be used to differentiate between clients

Parameters

• nmg (NetmaskGroup) – The netmasks to match, can be a string, a list of strings or a
NetmaskGroup object.

• src (bool) – Whether to match source or destination address of the packet. Defaults
to true (matches source)

• quiet (bool) – Do not display the list of matched netmasks in Rules. Default is false.

OpcodeRule(code)
Matches queries with opcode code. code can be directly specified as an integer, or one of the built-in
DNSOpcodes.

Parameters code (int) – The opcode to match

PayloadSizeRule(comparison, size)
New in version 1.9.0.

Matches queries or responses whose DNS payload size fits the given comparison.

Parameters

• comparison (str) – The comparison operator to use. Supported values are equal,
greater, greaterOrEqual, smaller and smallerOrEqual.

• size (int) – The size to compare to.

ProbaRule(probability)
Matches queries with a given probability. 1.0 means “always”

Parameters probability (double) – Probability of a match

240 Chapter 19. Reference Guides

dnsdist

ProxyProtocolValueRule(type[, value])
New in version 1.6.0.

Matches queries that have a proxy protocol TLV value of the specified type. If value is set, the content of
the value should also match the content of value.

Parameters

• type (int) – The type of the value, ranging from 0 to 255 (both included)

• value (str) – The optional binary-safe value to match

QClassRule(qclass)
Matches queries with the specified qclass. class can be specified as an integer or as one of the built-in
DNSClass.

Parameters qclass (int) – The Query Class to match on

QNameRule(qname)
Matches queries with the specified qname exactly.

Parameters qname (string) – Qname to match

QNameSetRule(set)
New in version 1.4.0: Matches if the set contains exact qname.

To match subdomain names, see QNameSuffixRule().

param DNSNameSet set Set with qnames of type class:DNSNameSet created with
newDNSNameSet().

QNameSuffixRule(suffixes[, quiet])
New in version 1.9.0.

Matches based on a group of domain suffixes for rapid testing of membership. The first param-
eter, suffixes, can be a string, list of strings or a class:SuffixMatchNode object created with
newSuffixMatchNode(). Pass true as second parameter to prevent listing of all domains matched.

To match domain names exactly, see QNameSetRule().

This rule existed before 1.9.0 but was called SuffixMatchNodeRule(), only accepting a
SuffixMatchNode parameter.

Parameters

• suffixes – A string, list of strings, or a SuffixMatchNode to match on

• quiet (bool) – Do not display the list of matched domains in Rules. Default is false.

Matches queries with the specified qname exactly.

param string qname Qname to match

QNameLabelsCountRule(min, max)
Matches if the qname has less than min or more than max labels.

Parameters

• min (int) – Minimum number of labels

• max (int) – Maximum nimber of labels

QNameWireLengthRule(min, max)
Matches if the qname’s length on the wire is less than min or more than max bytes.

Parameters

• min (int) – Minimum number of bytes

• max (int) – Maximum nimber of bytes

19.27. Rule selectors 241

dnsdist

QTypeRule(qtype)
Matches queries with the specified qtype qtype may be specified as an integer or as one of the built-in
QTypes. For instance DNSQType.A, DNSQType.TXT and DNSQType.ANY.

Parameters qtype (int) – The QType to match on

RCodeRule(rcode)
Matches queries or responses with the specified rcode. rcode can be specified as an integer or as one of
the built-in RCode. Only the non-extended RCode is matched (lower 4bits).

Parameters rcode (int) – The RCODE to match on

RDRule()
Matches queries with the RD flag set.

RegexRule(regex)
Matches the query name against the regex.

addAction(RegexRule("[0-9]{5,}"), DelayAction(750)) -- milliseconds
addAction(RegexRule("[0-9]{4,}\\.example$"), DropAction())

This delays any query for a domain name with 5 or more consecutive digits in it. The second rule drops
anything with more than 4 consecutive digits within a .EXAMPLE domain.

Note that the query name is presented without a trailing dot to the regex. The regex is applied case insensi-
tively.

Parameters regex (string) – A regular expression to match the traffic on

RecordsCountRule(section, minCount, maxCount)
Matches if there is at least minCount and at most maxCount records in the section section. section
can be specified as an integer or as a DNS Packet Sections.

Parameters

• section (int) – The section to match on

• minCount (int) – The minimum number of entries

• maxCount (int) – The maximum number of entries

RecordsTypeCountRule(section, qtype, minCount, maxCount)
Matches if there is at least minCount and at most maxCount records of type type in the section
section. section can be specified as an integer or as a DNS Packet Sections. qtype may be specified
as an integer or as one of the built-in QTypes, for instance DNSQType.A or DNSQType.TXT.

Parameters

• section (int) – The section to match on

• qtype (int) – The QTYPE to match on

• minCount (int) – The minimum number of entries

• maxCount (int) – The maximum number of entries

RE2Rule(regex)
Matches the query name against the supplied regex using the RE2 engine.

For an example of usage, see RegexRule().

Note Only available when dnsdist was built with libre2 support.

Parameters regex (str) – The regular expression to match the QNAME.

SNIRule(name)
New in version 1.4.0.

Matches against the TLS Server Name Indication value sent by the client, if any. Only makes sense for
DoT or DoH, and for that last one matching on the HTTP Host header using HTTPHeaderRule() might

242 Chapter 19. Reference Guides

dnsdist

provide more consistent results. As of the version 2.3.0-beta of h2o, it is unfortunately not possible to
extract the SNI value from DoH connections, and it is therefore necessary to use the HTTP Host header
until version 2.3.0 is released, or nghttp2 is used for incoming DoH instead (1.9.0+).

Parameters name (str) – The exact SNI name to match.

SuffixMatchNodeRule(smn[, quiet])
Changed in version 1.9.0: The smn parameter now accepts a string or a list of strings in addition to a
class:SuffixMatchNode object.

Matches based on a group of domain suffixes for rapid testing of membership. The first parameter, smn,
can be a string, list of strings or a class:SuffixMatchNode object created with newSuffixMatchNode().
Pass true as second parameter to prevent listing of all domains matched.

To match domain names exactly, see QNameSetRule().

Since 1.9.0, this rule can also be used via the alias QNameSuffixRule().

Parameters

• smn (SuffixMatchNode) – A string, list of strings, or a SuffixMatchNode to
match on

• quiet (bool) – Do not display the list of matched domains in Rules. Default is false.

TagRule(name[, value])
Matches question or answer with a tag named name set. If value is specified, the existing tag value should
match too.

Parameters

• name (string) – The name of the tag that has to be set

• value (string) – If set, the value the tag has to be set to. Default is unset

TCPRule(tcp)
Matches question received over TCP if tcp is true, over UDP otherwise.

Parameters tcp (bool) – Match TCP traffic if true, UDP traffic if false.

TrailingDataRule()
Matches if the query has trailing data.

PoolAvailableRule(poolname)
Check whether a pool has any servers available to handle queries

--- Send queries to default pool when servers are available
addAction(PoolAvailableRule(""), PoolAction(""))
--- Send queries to fallback pool if not
addAction(AllRule(), PoolAction("fallback"))

Parameters poolname (string) – Pool to check

PoolOutstandingRule(poolname, limit)
New in version 1.7.0.

Check whether a pool has total outstanding queries above limit

--- Send queries to spill over pool if default pool is under pressure
addAction(PoolOutstandingRule("", 5000), PoolAction("spillover"))

Parameters

• poolname (string) – Pool to check

• limit (int) – Total outstanding limit

19.27. Rule selectors 243

dnsdist

19.27.1 Combining Rules

AndRule(selectors)
Matches traffic if all selectors match.

Parameters selectors ({Rule}) – A table of Rules

NotRule(selector)
Matches the traffic if the selector rule does not match;

Parameters selector (Rule) – A Rule

OrRule(selectors)
Matches the traffic if one or more of the selectors Rules does match.

Parameters selector ({Rule}) – A table of Rules

19.27.2 Objects

class DNSDistRuleAction
New in version 1.9.0.

Represents a rule composed of a DNSRule selector, to select the queries this applies to, and a DNSAction
action to apply when the selector matches.

:getAction()
Return the DNSAction action of this rule.

:getSelector()
Return the DNSRule selector of this rule.

class DNSDistResponseRuleAction
New in version 1.9.0.

Represents a rule composed of a DNSRule selector, to select the responses this applies to, and a
DNSResponseAction action to apply when the selector matches.

:getAction()
Return the DNSResponseAction action of this rule.

:getSelector()
Return the DNSRule selector of this rule.

class DNSRule
New in version 1.9.0.

:getMatches()→ int
Return the number of times this selector matched a query or a response. Note that if the same selector is
reused for different DNSDistRuleAction objects, the counter will be common to all these objects.

19.28 SVCRecordParameters

newSVCRecordParameters(priority, target[, SVCParams])→ SVCRecordParameters
New in version 1.7.0.

Returns a SVCRecordParameters to use with SpoofSVCAction().

-- reply to SVCB queries for _dns.resolver.arpa. indicating DoT on port 853 of
→˓dot.powerdns.com. (192.0.2.1/2001:db8::1), DoH on https://doh.powerdns.com/
→˓dns-query (192.0.2.2/2001:db8::2)
local svc = { newSVCRecordParameters(1, "dot.powerdns.com.", { mandatory={"port
→˓"}, alpn={ "dot" }, noDefaultAlpn=true, port=853, ipv4hint={ "192.0.2.1" },
→˓ipv6hint={ "2001:db8::1" } }),

(continues on next page)

244 Chapter 19. Reference Guides

dnsdist

(continued from previous page)

newSVCRecordParameters(2, "doh.powerdns.com.", { mandatory={"port
→˓"}, alpn={ "h2" }, port=443, ipv4hint={ "192.0.2.2" }, ipv6hint={
→˓"2001:db8::2" }, key7 = "/dns-query{?dns}" })

}
addAction(AndRule{QTypeRule(64), QNameRule('_dns.resolver.arpa.')},
→˓SpoofSVCAction(svc))
-- reply with NODATA (NXDOMAIN would deny all types at that name and below,
→˓including SVC) for other types
addAction(QNameRule('_dns.resolver.arpa.'), NegativeAndSOAAction(false, '_dns.
→˓resolver.arpa.', 3600, 'fake.resolver.arpa.', 'fake.resolver.arpa.', 1, 1800,
→˓ 900, 604800, 86400))

Parameters

• priority (int) – The priority of this record. if more than one record is returned,
they all should have different priorities. A priority of 0 indicates Alias mode and no
other record should be present in the RRSet.

• target (str) – A domain name indicating the target name.

• SVCParams (table) – Optional table of additionals parameters. The key should be
the name of the SVC parameter and will be used as the SvcParamKey, while the value
depends on the key (see below)

These SVCParams can be set:

{
mandatory={STRING}, -- The mandatory keys. the table of strings must be

→˓the key names (like "port" and "key998").
alpn={STRING}, -- alpns for this record, like "dot" or "h2".
noDefaultAlpn=BOOL, -- When true, the no-default-alpn key is included in

→˓the record, false or absent means it does not exist in the record.
port=NUM, -- Port parameter to include.
ipv4hint={STRING}, -- IPv4 hints to include into the record.
ech=STRING, -- Encrypted Client Hello as a raw string (can include

→˓null bytes).
ipv6hint={STRING} -- IPv6 hints to include into the record.

}

Any other parameters can be set by using the keyNNNN syntax and must use a raw string. Like this:

key776="hello\0world"

class SVCRecordParameters
New in version 1.7.0.

Represents Service Binding (SVCB, HTTPS) record parameters, which can be used with
SpoofSVCAction().

19.29 Custom Metrics

You can define your own metrics that can be updated using Lua.

The first step is to declare a new metric using declareMetric(). In 1.8.0 the declaration had to be done at
configuration time, but since 1.8.1 it can be done at any point.

Then you can update those at runtime using the following functions, depending on the metric type:

• manipulate counters using incMetric() and decMetric()

• update a gauge using setMetric()

19.29. Custom Metrics 245

dnsdist

declareMetric(name, type, description[, prometheusName])→ bool
New in version 1.8.0.

Changed in version 1.8.1: This function can now be used at runtime, instead of only at configuration time.

Return true if declaration was successful

Parameters

• name (str) – The name of the metric, lowercase alphanumerical characters and dashes
(-) only

• type (str) – The desired type in gauge or counter

• name – The description of the metric

• prometheusName (str) – The name to use in the prometheus metrics, if supplied.
Otherwise the regular name will be used, prefixed with dnsdist_ and - replaced by
_.

incMetric(name[, step])→ int
New in version 1.8.0.

Changed in version 1.8.1: Optional step parameter added.

Increment counter by one (or more, see the step parameter), will issue an error if the metric is not declared
or not a counter Return the new value

Parameters

• name (str) – The name of the metric

• step (int) – By how much the counter should be incremented, default to 1.

decMetric(name)→ int
New in version 1.8.0.

Changed in version 1.8.1: Optional step parameter added.

Decrement counter by one (or more, see the step parameter), will issue an error if the metric is not declared
or not a counter Return the new value

Parameters

• name (str) – The name of the metric

• step (int) – By how much the counter should be decremented, default to 1.

getMetric(name)→ double
New in version 1.8.0.

Get metric value

Parameters name (str) – The name of the metric

setMetric(name, value)→ double
New in version 1.8.0.

Set the new value, will issue an error if the metric is not declared or not a gauge Return the new value

Parameters

• name (str) – The name of the metric

• value (double) – The new value

19.30 XSK / AF_XDP functions and objects

These are all the functions, objects and methods related to AF_XDP / XSK.

246 Chapter 19. Reference Guides

dnsdist

newXSK(options)
New in version 1.9.0.

This function creates a new XskSocket object, tied to a network interface and queue, to accept XSK /
AF_XDP packet from the Linux kernel. The returned object can be passed as a parameter to addLocal()
to use XSK for UDP packets between clients and dnsdist. It can also be passed to newServer to use XSK
for UDP packets between dnsdist a backend.

Parameters options (table) – A table with key: value pairs with listen options.

Options:

• ifName: str - The name of the network interface this object will be tied to.

• NIC_queue_id: int - The queue of the network interface this object will be tied to.

• frameNums: int - The number of UMEM frames to allocate for this socket. More frames mean that
a higher number of packets can be processed at the same time. 65535 is a good choice for maximum
performance.

• xskMapPath: str - The path of the BPF map used to communicate with the kernel space XDP
program, usually /sys/fs/bpf/dnsdist/xskmap.

class XskSocket
New in version 1.9.0.

Represents a XSK / AF_XDP socket tied to a specific network interface and queue. This object can be
created via :func:newXSK and passed to addLocal() to use XSK for UDP packets between clients and
dnsdist. It can also be passed to newServer to use XSK for UDP packets between dnsdist a backend.

:getMetrics()→ str
Returns a string containing XSK / AF_XDP metrics for this object, as reported by the Linux kernel.

19.30. XSK / AF_XDP functions and objects 247

dnsdist

248 Chapter 19. Reference Guides

CHAPTER

TWENTY

MANUAL PAGES

20.1 dnsdist

20.1.1 Synopsis

dnsdist [<option>. . .] [address]. . .

20.1.2 Description

dnsdist receives DNS queries and relays them to one or more downstream servers. It subsequently sends back
responses to the original requestor.

dnsdist operates over TCP and UDP, and strives to deliver very high performance over both.

Currently, queries are sent to the downstream server with the least outstanding queries. This effectively implies
load balancing, making sure that slower servers get less queries.

If a reply has not come in after a few seconds, it is removed from the queue, but in the short term, timeouts do
cause a server to get less traffic.

IPv4 and IPv6 operation can be mixed and matched, in other words, queries coming in over IPv6 could be for-
warded to IPv4 and vice versa.

dnsdist is scriptable in Lua, see the dnsdist documentation for more information on this.

20.1.3 Scope

dnsdist does not ‘think’ about DNS queries, it restricts itself to measuring response times and error codes and
routing questions accordingly. It comes with a very high performance packet-cache.

The goal for dnsdist is to remain simple. If more powerful loadbalancing is required, dedicated hardware or
software is recommended. Linux Virtual Server for example is often mentioned.

20.1.4 Options

-a <netmask>, --acl <netmask> Add netmask to the ACL.

-C <file>, --config <file> Load configuration from file.

--check-config Test the configuration file (which may be set with –config or -C) for errors.
dnsdist will show the errors and exit with a non-zero exit-code when errors
are found.

-c <address>, --client <address> Operate as a client, connect to dnsdist. This will read the dns-
dist configuration for the controlSocket statement and connect to it. When
address (with an optional port number) is set, dnsdist will connect to that
instead.

249

dnsdist

-k <key>, --setkey <key> When operating as a client(-c, –client), use key as shared secret to con-
nect to dnsdist. This should be the same key that is used on the server (set
with setKey()). Note that this will leak the key into your shell’s history and
into the systems running process list. Only available when dnsdist is com-
piled with libsodium or libcrypto support.

-e, --execute <command> Connect to dnsdist and execute command.

-h, --help Display a helpful message and exit.

-l, --local <address> Bind to address, Supply as many addresses (using multiple –local state-
ments) to listen on as required. Specify IPv4 as 0.0.0.0:53 and IPv6 as [::]:53.

--supervised Run in foreground, but do not spawn a console. Use this switch to run dnsdist
inside a supervisor (use with e.g. systemd and daemontools).

--disable-syslog Disable logging to syslog. Use this when running inside a supervisor that
handles logging (like systemd).

--log-timestamps Prepend timestamps to messages logged to standard out.

-u, --uid <uid> Change the process user to uid after binding sockets. uid can be a name or
number.

-g, --gid <gid> Change the process group to gid after binding sockets. gid Can be a name or
number.

-V, --version Show the dnsdist version and exit.

-v, --verbose Be verbose.

address are any number of downstream DNS servers, in the same syntax as used with –local. If the port is not
specified, 53 is used.

20.1.5 Bugs

Right now, the TCP support has some rather arbitrary limits.

20.1.6 Resources

Website: https://dnsdist.org

250 Chapter 20. Manual Pages

https://dnsdist.org

CHAPTER

TWENTYONE

CHANGELOG

21.1 1.9.3

Released: 5th of April 2024

21.1.1 Bug Fixes

• Revert “Release failed TCP backend connections more quickly” to fix a crash ¶ References: pull request
14040

21.2 1.9.2

Released: 5th of April 2024

21.2.1 Improvements

• Fix compilation warnings ¶ References: pull request 13938

• Docker: Only print config if debug flag is set ¶ References: pull request 13939

• Shrink InternalQueryState’s size by reordering its fields ¶ References: pull request 13942

• Fix annoying compiler warnings by introducing and switching to pdns::UniqueFilePtr ¶ References:
#13925, pull request 13943

• Support “no server available” result from Lua FFI load-balancing policies ¶ References: #13977, pull
request 14013

• Release incoming TCP connection right away on backend failure ¶ References: pull request 14016

• Release failed TCP backend connections more quickly ¶ References: pull request 14017

21.2.2 Bug Fixes

• Use server preference algorithm for ALPN selection ¶ References: #13850, pull request 13940

• Fix a null-deref in incoming DNS over HTTPS with the nghttp2 provider ¶ References: pull request 14012

• Fix DNS over HTTP connections/queries counters with the nghttp2 provider ¶ References: pull request
14014

• Fix first IPv6 console connection being rejected ¶ References: #13903, pull request 13941

• Fix XSK-enabled check when reconnecting a backend ¶ References: pull request 13944

• Properly handle a failure of the first lazy health-check ¶ References: #13837, pull request 13945

251

https://github.com/PowerDNS/pdns/pull/14040
https://github.com/PowerDNS/pdns/pull/14040
https://github.com/PowerDNS/pdns/pull/13938
https://github.com/PowerDNS/pdns/pull/13939
https://github.com/PowerDNS/pdns/pull/13942
https://github.com/PowerDNS/pdns/issues/13925
https://github.com/PowerDNS/pdns/pull/13943
https://github.com/PowerDNS/pdns/issues/13977
https://github.com/PowerDNS/pdns/pull/14013
https://github.com/PowerDNS/pdns/pull/14013
https://github.com/PowerDNS/pdns/pull/14016
https://github.com/PowerDNS/pdns/pull/14017
https://github.com/PowerDNS/pdns/issues/13850
https://github.com/PowerDNS/pdns/pull/13940
https://github.com/PowerDNS/pdns/pull/14012
https://github.com/PowerDNS/pdns/pull/14014
https://github.com/PowerDNS/pdns/pull/14014
https://github.com/PowerDNS/pdns/issues/13903
https://github.com/PowerDNS/pdns/pull/13941
https://github.com/PowerDNS/pdns/pull/13944
https://github.com/PowerDNS/pdns/issues/13837
https://github.com/PowerDNS/pdns/pull/13945

dnsdist

• Also handle EHOSTUNREACH as a case for reconnecting the socket ¶ References: #13945, pull request
13976

• FDWrapper: Do not try to close negative file descriptors ¶ References: pull request 14015

21.3 1.9.1

Released: 14th of March 2024

This release does not contain any dnsdist code changes compared to 1.9.0. The only thing that changed is the
version of Quiche, because of a security update.

Please review the Upgrade Guide before upgrading.

21.3.1 Bug Fixes

• update Quiche to 0.20.1. Fixes CVE-2024-1410 and CVE-2024-1765. ¶ References: pull request 13912

21.4 1.9.0

Released: 16th of February 2024

Please review the Upgrade Guide before upgrading.

21.4.1 Improvements

• Better handling of short, non-initial QUIC headers ¶ References: pull request 13755

• Fix performance inefficiencies reported by Coverity ¶ References: pull request 13779

• Fix a warning reported by Coverity ¶ References: pull request 13757

• Add a Lua maintenance hook ¶ References: pull request 13768

21.4.2 Bug Fixes

• Fix a missing explicit atomic load of the Quiche configuration ¶ References: pull request 13774

• Do not allocate 16-byte aligned objects through lua(jit) ¶ References: #13766, pull request 13771

21.5 1.9.0-rc1

Released: 30th of January 2024

Please review the Upgrade Guide before upgrading.

21.5.1 New Features

• Add AF_XDP support for UDP (Y7n05h) ¶ References: pull request 11652

252 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/13945
https://github.com/PowerDNS/pdns/pull/13976
https://github.com/PowerDNS/pdns/pull/13976
https://github.com/PowerDNS/pdns/pull/14015
https://github.com/cloudflare/quiche/releases/tag/0.20.1
https://www.cve.org/CVERecord?id=CVE-2024-1410
https://www.cve.org/CVERecord?id=CVE-2024-1765
https://github.com/PowerDNS/pdns/pull/13912
https://github.com/PowerDNS/pdns/pull/13755
https://github.com/PowerDNS/pdns/pull/13779
https://github.com/PowerDNS/pdns/pull/13757
https://github.com/PowerDNS/pdns/pull/13768
https://github.com/PowerDNS/pdns/pull/13774
https://github.com/PowerDNS/pdns/issues/13766
https://github.com/PowerDNS/pdns/pull/13771
https://github.com/PowerDNS/pdns/pull/11652

dnsdist

21.5.2 Improvements

• Enable DoQ and DoH3 in dockerfile-dnsdist (Denis Machard) ¶ References: pull request 13674

• Enable PMTU discovery and disable fragmentation on QUIC binds ¶ References: pull request 13676

• Fall back to libcrypto for authenticated encryption ¶ References: pull request 13650

• Optimize the DoQ packet handling path ¶ References: pull request 13666

• Increase UDP receive and send buffers to the maximum allowed ¶ References: pull request 13664

• Clean up the Lua objects before exiting ¶ References: pull request 13667

• Cleanup of code doing SNMP OID handling ¶ References: pull request 13711

• Fix missed optimizations reported by Coverity ¶ References: pull request 13727

• Move the console socket instead of copying it ¶ References: pull request 13735

• DNSName: Correct len and offset types ¶ References: pull request 13723

• DNSName: Optimize parsing of uncompressed labels ¶ References: pull request 13724

21.5.3 Bug Fixes

• Handle congested DoQ streams ¶ References: #13631, pull request 13638

• Make sure we enforce the ACL over DoQ and DoH3 ¶ References: pull request 13670

• Set the DNS over HTTP/3 default port to 443 ¶ References: pull request 13647

• Grant unidirectional HTTP/3 streams for DoH3 ¶ References: pull request 13678

• Buffer HTTP/3 headers until the query has been dispatched ¶ References: #13687, pull request 13689

• Add content-type header information in DoH3 responses ¶ References: #13690, pull request 13713

• Properly set the incoming protocol when logging via Protobuf or dnstap ¶ References: pull request 13716

• Fix the ‘TCP Died Reading Query” metric, as reported by Coverity ¶ References: pull request 13630

21.6 1.8.3

Released: 15th of December 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.6.1 Improvements

• Add a DynBlockRulesGroup:removeRange() binding ¶ References: pull request 13601

• Add a DNSHeader:getTC() Lua binding ¶ References: pull request 13605

21.6.2 Bug Fixes

• Fix code producing JSON ¶ References: #13050, pull request 13607

• Refactor the exponential back-off timer code ¶ References: #13519, pull request 13523

• Detect and dismiss truncated UDP responses from a backend ¶ References: pull request 13598

• Fix the removal of the last rule by name or UUID ¶ References: pull request 13599

21.6. 1.8.3 253

https://github.com/PowerDNS/pdns/pull/13674
https://github.com/PowerDNS/pdns/pull/13676
https://github.com/PowerDNS/pdns/pull/13650
https://github.com/PowerDNS/pdns/pull/13666
https://github.com/PowerDNS/pdns/pull/13664
https://github.com/PowerDNS/pdns/pull/13667
https://github.com/PowerDNS/pdns/pull/13711
https://github.com/PowerDNS/pdns/pull/13727
https://github.com/PowerDNS/pdns/pull/13735
https://github.com/PowerDNS/pdns/pull/13723
https://github.com/PowerDNS/pdns/pull/13724
https://github.com/PowerDNS/pdns/issues/13631
https://github.com/PowerDNS/pdns/pull/13638
https://github.com/PowerDNS/pdns/pull/13670
https://github.com/PowerDNS/pdns/pull/13647
https://github.com/PowerDNS/pdns/pull/13678
https://github.com/PowerDNS/pdns/issues/13687
https://github.com/PowerDNS/pdns/pull/13689
https://github.com/PowerDNS/pdns/issues/13690
https://github.com/PowerDNS/pdns/pull/13713
https://github.com/PowerDNS/pdns/pull/13716
https://github.com/PowerDNS/pdns/pull/13630
https://github.com/PowerDNS/pdns/pull/13601
https://github.com/PowerDNS/pdns/pull/13605
https://github.com/PowerDNS/pdns/issues/13050
https://github.com/PowerDNS/pdns/pull/13607
https://github.com/PowerDNS/pdns/issues/13519
https://github.com/PowerDNS/pdns/pull/13523
https://github.com/PowerDNS/pdns/pull/13598
https://github.com/PowerDNS/pdns/pull/13599

dnsdist

• Fix several cosmetic issues in eBPF dynamic blocks, update documentation ¶ References: #13307, pull
request 13602

21.7 1.9.0-alpha4

Released: 14th of December 2023

Please review the Upgrade Guide before upgrading.

21.7.1 New Features

• Add support for incoming DNS over HTTP/3 ¶ References: pull request 13556

• Add a ‘rings’ endpoint to the REST API ¶ References: pull request 13489

• Add support for setting Extended DNS Error statuses ¶ References: pull request 13473

• Add a cache-miss ratio dynamic block rule ¶ References: pull request 13492

• Add getAddressInfo() for asynchronous DNS resolution ¶ References: pull request 13505

• Add PayloadSizeRule and TCResponseAction ¶ References: pull request 13564

21.7.2 Improvements

• Require Quiche >= 0.15.0 ¶ References: pull request 13437

• Add missing DoQ latency metrics ¶ References: pull request 13472

• Send a HTTP 400 response to HTTP/1.1 clients ¶ References: pull request 13594

• Remove legacy terms from the codebase (Kees Monshouwer) ¶ References: pull request 13023

• Wrap DIR* objects in unique pointers to prevent memory leaks ¶ References: pull request 13191

• Add a DynBlockRulesGroup:removeRange() binding ¶ References: pull request 13342

• Fix a few Coverity warnings ¶ References: pull request 13435

• Fix Coverity CID 1523748: Performance inefficiencies in dolog.hh ¶ References: pull request 13445

• Add pdns::visit_directory(), wrapping opendir/readdir/closedir ¶ References: #13191, pull request 13485

• Improve NetmaskGroupRule/SuffixMatchNodeRule, deprecate makeRule ¶ References: pull request 13500

• Add NetmaskGroup:addNMG() to merge Netmask groups ¶ References: pull request 13503

• Add an option to set the SSL proxy protocol TLV ¶ References: pull request 13506

• Add Proxy Protocol v2 support to TeeAction ¶ References: pull request 13509

• Allow setting the action from setSuffixMatchRule{,FFI}()’s visitor ¶ References: pull request 13515

• Allow enabling incoming PROXY protocol on a per-bind basis ¶ References: pull request 13517

• Make the max size of entries in the packet cache configurable ¶ References: pull request 13537

• Spoof a raw response for ANY queries ¶ References: pull request 13560

• Add Lua FFI bindings: hashing arbitrary data and knowing if the query was received over IPv6 ¶ Refer-
ences: pull request 13565

• Add QNameSuffixRule ¶ References: pull request 13592

254 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/13307
https://github.com/PowerDNS/pdns/pull/13602
https://github.com/PowerDNS/pdns/pull/13602
https://github.com/PowerDNS/pdns/pull/13556
https://github.com/PowerDNS/pdns/pull/13489
https://github.com/PowerDNS/pdns/pull/13473
https://github.com/PowerDNS/pdns/pull/13492
https://github.com/PowerDNS/pdns/pull/13505
https://github.com/PowerDNS/pdns/pull/13564
https://github.com/PowerDNS/pdns/pull/13437
https://github.com/PowerDNS/pdns/pull/13472
https://github.com/PowerDNS/pdns/pull/13594
https://github.com/PowerDNS/pdns/pull/13023
https://github.com/PowerDNS/pdns/pull/13191
https://github.com/PowerDNS/pdns/pull/13342
https://github.com/PowerDNS/pdns/pull/13435
https://github.com/PowerDNS/pdns/pull/13445
https://github.com/PowerDNS/pdns/issues/13191
https://github.com/PowerDNS/pdns/pull/13485
https://github.com/PowerDNS/pdns/pull/13500
https://github.com/PowerDNS/pdns/pull/13503
https://github.com/PowerDNS/pdns/pull/13506
https://github.com/PowerDNS/pdns/pull/13509
https://github.com/PowerDNS/pdns/pull/13515
https://github.com/PowerDNS/pdns/pull/13517
https://github.com/PowerDNS/pdns/pull/13537
https://github.com/PowerDNS/pdns/pull/13560
https://github.com/PowerDNS/pdns/pull/13565
https://github.com/PowerDNS/pdns/pull/13592

dnsdist

21.7.3 Bug Fixes

• Fix building with DoQ but without DoH or DoT ¶ References: pull request 13524

• Fix the case where nghttp2 is available but DoH is disabled ¶ References: pull request 13381

• Fix the removal of the last rule by name or UUID ¶ References: pull request 13488

• Refactor the exponential back-off timer code ¶ References: pull request 13520

• Detect and dismiss truncated UDP responses from a backend ¶ References: pull request 13536

21.8 1.9.0-alpha3

Released: 20th of October 2023

Please review the Upgrade Guide before upgrading.

21.8.1 New Features

• Add support for incoming DNS over QUIC ¶ References: pull request 13280

• Log Extended DNS Errors (EDE) to protobuf ¶ References: pull request 13185

21.8.2 Improvements

• Display the rule name, if any, in the web interface ¶ References: pull request 13335

• Add Lua binding to downstream address (Denis Machard) ¶ References: #13201, pull request 13275

• Set proper levels when logging messages ¶ References: pull request 13305

• Fix several cosmetic issues in eBPF dynamic blocks, update documentation ¶ References: pull request
13310

21.8.3 Bug Fixes

• Fix a typo in ‘Client timeouts’ (phonedph1) ¶ References: pull request 13302

• Netmask: Normalize subnet masks coming from a string ¶ References: pull request 13340

• Prevent DNS header alignment issues ¶ References: #13280, pull request 13372

21.8.4 misc

• Fix timeouts on incoming DoH connections with nghttp2 ¶ References: pull request 13298

• Enable back h2o support in our packages ¶ References: pull request 13274

21.9 1.9.0-alpha2

Released: Never

21.8. 1.9.0-alpha3 255

https://github.com/PowerDNS/pdns/pull/13524
https://github.com/PowerDNS/pdns/pull/13381
https://github.com/PowerDNS/pdns/pull/13488
https://github.com/PowerDNS/pdns/pull/13520
https://github.com/PowerDNS/pdns/pull/13536
https://github.com/PowerDNS/pdns/pull/13280
https://github.com/PowerDNS/pdns/pull/13185
https://github.com/PowerDNS/pdns/pull/13335
https://github.com/PowerDNS/pdns/issues/13201
https://github.com/PowerDNS/pdns/pull/13275
https://github.com/PowerDNS/pdns/pull/13305
https://github.com/PowerDNS/pdns/pull/13310
https://github.com/PowerDNS/pdns/pull/13310
https://github.com/PowerDNS/pdns/pull/13302
https://github.com/PowerDNS/pdns/pull/13340
https://github.com/PowerDNS/pdns/issues/13280
https://github.com/PowerDNS/pdns/pull/13372
https://github.com/PowerDNS/pdns/pull/13298
https://github.com/PowerDNS/pdns/pull/13274

dnsdist

21.10 1.8.2

Released: 11th of October 2023

This release fixes the HTTP2 rapid reset attack for the packages we provide. If you are compiling DNSdist yourself
or using the packages provided by your distribution, please check that the h2o library has been patched to mitigate
this vulnerability.

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.10.1 Bug Fixes

• Switch to our fork of h2o to mitigate the HTTP2 rapid reset attack ¶ References: pull request #13349

21.11 1.7.5

Released: 11th of October 2023

This release fixes the HTTP2 rapid reset attack for the packages we provide. If you are compiling DNSdist yourself
or using the packages provided by your distribution, please check that the h2o library has been patched to mitigate
this vulnerability.

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.11.1 Bug Fixes

• Switch to our fork of h2o to mitigate the HTTP2 rapid reset attack ¶ References: pull request #13351

21.12 1.9.0-alpha1

Released: 18th of September 2023

Please review the Upgrade Guide before upgrading.

21.12.1 New Features

• Add Lua bindings to access selector and action ¶ References: #13007, pull request 13013

• Add an option to write grepq’s output to a file ¶ References: pull request 12689

21.12.2 Improvements

• Add support for incoming DoH via nghttp2 ¶ References: pull request 12678

• Add metrics for health-check failures ¶ References: pull request 13009

• Fix building our fuzzing targets from a dist tarball ¶ References: pull request 13145

• Add a DNSHeader:getTC() Lua binding ¶ References: pull request 13135

• Stop passing -u dnsdist -g dnsdist on systemd’s ExecStart ¶ References: pull request 13088

• Use arc4random only for random values ¶ References: pull request 12931

256 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/#13349
https://github.com/PowerDNS/pdns/pull/#13351
https://github.com/PowerDNS/pdns/issues/13007
https://github.com/PowerDNS/pdns/pull/13013
https://github.com/PowerDNS/pdns/pull/12689
https://github.com/PowerDNS/pdns/pull/12678
https://github.com/PowerDNS/pdns/pull/13009
https://github.com/PowerDNS/pdns/pull/13145
https://github.com/PowerDNS/pdns/pull/13135
https://github.com/PowerDNS/pdns/pull/13088
https://github.com/PowerDNS/pdns/pull/12931

dnsdist

21.12.3 Removals

• Change the default for building with net-snmp from auto to no ¶ References: pull request 13168

21.13 1.8.1

Released: 8th of September 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.13.1 New Features

• Allow declaring custom metrics at runtime ¶ References: pull request 13123

21.13.2 Improvements

• Stop using the now deprecated ERR_load_CRYPTO_strings() to detect OpenSSL ¶ References: pull re-
quest 13121

• Automatically load Lua FFI inspection functions ¶ References: pull request 13122

• Increment the “dyn blocked” counter for eBPF blocks as well ¶ References: pull request 13125

• Make DNSQType.TSIG available (Jacob Bunk) ¶ References: pull request 13133

21.13.3 Bug Fixes

• Fix a crash when X-Forwarded-For overrides the initial source IP ¶ References: pull request 12977

• Fix cache hit and miss metrics with DoH queries ¶ References: #12762, pull request 13131

• Fix a memory leak when processing TLS tickets w/ OpenSSL 3.x ¶ References: pull request 13130

• Fix a race when creating the first TLS connections ¶ References: pull request 13178

• Print the received, invalid health-check response ID ¶ References: pull request 12820

• Account for the health-check run time between two runs ¶ References: pull request 12821

• Properly set the size of the UDP health-check response ¶ References: pull request 12822

• Add the query ID to health-check log messages, fix nits ¶ References: pull request 12823

• Stop setting SO_REUSEADDR on outgoing UDP client sockets ¶ References: pull request 12824

• Properly handle short reads on backend upgrade discovery ¶ References: pull request 13116

• Undo an accidentally change of disableZeroScope to disableZeroScoping (Winfried Angele) ¶ References:
pull request 13117

• Fix the group of the dnsdist.conf file when installed via RPM ¶ References: #13027, pull request 13118

• Work around Red Hat 8 messing up OpenSSL’s headers and refusing to fix it ¶ References: #12926, pull
request 13119

• Fix a typo for libedit in the dnsdist features list ¶ References: pull request 13120

• Fix webserver config template for our docker container (Houtworm) ¶ References: pull request 13124

• YaHTTP: Prevent integer overflow on very large chunks ¶ References: pull request 13127

• Fix the console description of PoolAction and QPSPoolAction (phonedph1) ¶ References: pull request
13128

21.13. 1.8.1 257

https://github.com/PowerDNS/pdns/pull/13168
https://github.com/PowerDNS/pdns/pull/13123
https://github.com/PowerDNS/pdns/pull/13121
https://github.com/PowerDNS/pdns/pull/13121
https://github.com/PowerDNS/pdns/pull/13122
https://github.com/PowerDNS/pdns/pull/13125
https://github.com/PowerDNS/pdns/pull/13133
https://github.com/PowerDNS/pdns/pull/12977
https://github.com/PowerDNS/pdns/issues/12762
https://github.com/PowerDNS/pdns/pull/13131
https://github.com/PowerDNS/pdns/pull/13130
https://github.com/PowerDNS/pdns/pull/13178
https://github.com/PowerDNS/pdns/pull/12820
https://github.com/PowerDNS/pdns/pull/12821
https://github.com/PowerDNS/pdns/pull/12822
https://github.com/PowerDNS/pdns/pull/12823
https://github.com/PowerDNS/pdns/pull/12824
https://github.com/PowerDNS/pdns/pull/13116
https://github.com/PowerDNS/pdns/pull/13117
https://github.com/PowerDNS/pdns/issues/13027
https://github.com/PowerDNS/pdns/pull/13118
https://github.com/PowerDNS/pdns/issues/12926
https://github.com/PowerDNS/pdns/pull/13119
https://github.com/PowerDNS/pdns/pull/13119
https://github.com/PowerDNS/pdns/pull/13120
https://github.com/PowerDNS/pdns/pull/13124
https://github.com/PowerDNS/pdns/pull/13127
https://github.com/PowerDNS/pdns/pull/13128
https://github.com/PowerDNS/pdns/pull/13128

dnsdist

• Properly handle reconnection failure for backend UDP sockets ¶ References: #12711, pull request 13129

• SpoofAction: copy the QClass from the request (Christof Chen) ¶ References: pull request 13132

• Properly record self-answered UDP responses with recvmmsg ¶ References: pull request 13150

21.14 1.7.4

Released: 14th of April 2023

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.14.1 New Features

• Add getPoolNames() function, returning a list of pool names (Christof Chen) ¶ References: #12074, pull
request 12621

21.14.2 Bug Fixes

• Fix the health-check timeout computation for DoH backend ¶ References: pull request 12327

• Skip invalid OCSP files after issuing a warning ¶ References: #12341, pull request 12421

• Ignore unclean TLS session shutdown ¶ References: #12236, pull request 12237

• Properly encode json strings containing binary data ¶ References: #9349, pull request 12260

• Properly update rcode-related metrics on RCodeAction hits ¶ References: #11498, pull request 12484

• Fix building with boost < 1.56 ¶ References: #12177, pull request 12183

• lock.hh: include <stdexcept> ¶ References: #12453, pull request 12460

• dnsdist-protocols.hh: include <cstdint> (Sander Hoentjen) ¶ References: pull request 12569

• Fix the formatting of ‘showServers’ ¶ References: pull request 12535

• Properly record the incoming flags on a timeout ¶ References: #11905, pull request 12529

• Prevent an underflow of the TCP d_queued counter ¶ References: #12357, pull request 12365

• Properly handle single-SOA XFR responses ¶ References: #12099, pull request 12100

• Also reconnect on ENETUNREACH. (Asgeir Storesund Nilsen) ¶ References: #4155, pull request 11830

• Fix a bug in SetEDNSOptionAction ¶ References: #11728, pull request 11729

• Fix the number of concurrent queries on a backend TCP conn ¶ References: pull request 11718

21.15 1.8.0

Released: 30th of March 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.15.1 Bug Fixes

• Fix ‘Unknown key’ issue for actions and rules parameters ¶ References: pull request 12687

• Fix a dnsheader unaligned case ¶ References: pull request 12672

• secpoll: explicitly include necessary ctime header for time_t ¶ References: pull request 12654

258 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/12711
https://github.com/PowerDNS/pdns/pull/13129
https://github.com/PowerDNS/pdns/pull/13132
https://github.com/PowerDNS/pdns/pull/13150
https://github.com/PowerDNS/pdns/issues/12074
https://github.com/PowerDNS/pdns/pull/12621
https://github.com/PowerDNS/pdns/pull/12621
https://github.com/PowerDNS/pdns/pull/12327
https://github.com/PowerDNS/pdns/issues/12341
https://github.com/PowerDNS/pdns/pull/12421
https://github.com/PowerDNS/pdns/issues/12236
https://github.com/PowerDNS/pdns/pull/12237
https://github.com/PowerDNS/pdns/issues/9349
https://github.com/PowerDNS/pdns/pull/12260
https://github.com/PowerDNS/pdns/issues/11498
https://github.com/PowerDNS/pdns/pull/12484
https://github.com/PowerDNS/pdns/issues/12177
https://github.com/PowerDNS/pdns/pull/12183
https://github.com/PowerDNS/pdns/issues/12453
https://github.com/PowerDNS/pdns/pull/12460
https://github.com/PowerDNS/pdns/pull/12569
https://github.com/PowerDNS/pdns/pull/12535
https://github.com/PowerDNS/pdns/issues/11905
https://github.com/PowerDNS/pdns/pull/12529
https://github.com/PowerDNS/pdns/issues/12357
https://github.com/PowerDNS/pdns/pull/12365
https://github.com/PowerDNS/pdns/issues/12099
https://github.com/PowerDNS/pdns/pull/12100
https://github.com/PowerDNS/pdns/issues/4155
https://github.com/PowerDNS/pdns/pull/11830
https://github.com/PowerDNS/pdns/issues/11728
https://github.com/PowerDNS/pdns/pull/11729
https://github.com/PowerDNS/pdns/pull/11718
https://github.com/PowerDNS/pdns/pull/12687
https://github.com/PowerDNS/pdns/pull/12672
https://github.com/PowerDNS/pdns/pull/12654

dnsdist

21.16 1.8.0-rc3

Released: 16th of March 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.16.1 Improvements

• Report per-incoming transport latencies in the web interface ¶ References: pull request 12638

• Report the TCP latency for TCP-only Do53, DoT and DoH backends ¶ References: pull request 12648

• Count hits in the StatNode ¶ References: pull request 12626

21.16.2 Bug Fixes

• Use the correct source address when harvesting failed ¶ References: pull request 12641

• Fix a race when a cross-protocol query triggers an IO error ¶ References: pull request 12639

21.17 1.8.0-rc2

Released: 9th of March 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.17.1 Improvements

• Add Lua bindings for PB requestorID, deviceName and deviceID ¶ References: pull request 12615

• Clean up the fortify and LTO m4 by not directly editing flags ¶ References: pull request 12593

• YaHTTP: Better detection of whether C++11 features are available ¶ References: pull request 12589

• Skip signal-unsafe logging when we are about to exit, with TSAN ¶ References: pull request 12587

21.17.2 Bug Fixes

• Fix compilation with DoH disabled (Adam Majer) ¶ References: pull request 12588

• Only increment the ‘servfail-responses’ metric on backend responses (phonedph1) ¶ References: pull re-
quest 12592

• Fix the harvesting of destination addresses ¶ References: pull request 12586

21.18 1.8.0-rc1

Released: 23rd of February 2023

Please review the Upgrade Guide before upgrading from versions < 1.8.x.

21.16. 1.8.0-rc3 259

https://github.com/PowerDNS/pdns/pull/12638
https://github.com/PowerDNS/pdns/pull/12648
https://github.com/PowerDNS/pdns/pull/12626
https://github.com/PowerDNS/pdns/pull/12641
https://github.com/PowerDNS/pdns/pull/12639
https://github.com/PowerDNS/pdns/pull/12615
https://github.com/PowerDNS/pdns/pull/12593
https://github.com/PowerDNS/pdns/pull/12589
https://github.com/PowerDNS/pdns/pull/12587
https://github.com/PowerDNS/pdns/pull/12588
https://github.com/PowerDNS/pdns/pull/12592
https://github.com/PowerDNS/pdns/pull/12592
https://github.com/PowerDNS/pdns/pull/12586

dnsdist

21.18.1 New Features

• Allow randomly selecting a backend UDP socket and query ID ¶ References: pull request 11163

• Dynamic discovery and upgrade of backends ¶ References: pull request 11293

• Add support for password protected PKCS12 files for TLS configuration ¶ References: pull request 11027

• Add experimental support for TLS asynchronous engines ¶ References: pull request 10734

• Add an API endpoint to remove entries from caches ¶ References: #10468, #6154, pull request 12473

• Add support for user defined metrics ¶ References: pull request 11674

• Add the ability to change the qname and owner names in DNS packets ¶ References: pull request 12417

• Implement async processing of queries and responses ¶ References: pull request 12388

• Add the ability to cap the TTL of records after insertion into the cache ¶ References: pull request 12384

• Add SetReducedTTLResponseAction ¶ References: pull request 12400

• Add a Lua FFI interface for metrics ¶ References: pull request 12385

• Add a new chain of rules triggered after cache insertion ¶ References: pull request 12280

• Added XDP middleware for dropped/redirected queries logging (Mini Pierre) ¶ References: pull request
11020

• Implement a ‘lazy’ health-checking mode ¶ References: pull request 12065

• Add getPoolNames() function, returning a list of pool names (Christof Chen) ¶ References: #12073, pull
request 12074

• Cleaner way of getting the IP/masks associated to a network interface ¶ References: pull request 12082

• Add Lua helpers to look into the content of DNS payloads ¶ References: pull request 12022

• Add more Lua bindings for network-related operations ¶ References: pull request 11994

• Add Lua binding for inspecting the in-memory ring buffers ¶ References: pull request 12008

• Add Lua bindings to look up domain and IP addresses from the cache ¶ References: pull request 12007

• Implement SuffixMatchTree::getBestMatch() to get the name that matched ¶ References: pull request 11698

• Use BPF_MAP_TYPE_LPM_TRIE for range matching (Y7n05h) ¶ References: pull request 11526

• Add getVerbose() function ¶ References: pull request 11637

• Add Lua bindings to access the DNS payload as a string ¶ References: pull request 11606

• Add setVerbose() to switch the verbose mode at runtime ¶ References: pull request 11567

• Add a ‘getAddressAndPort()’ method to DOHFrontend and TLSFrontend objects ¶ References: #11434,
pull request 11547

• Add setTCPFastOpenKey() (Y7n05h) ¶ References: #9994, pull request 11497

• Add Lua FFI helpers for protocol and MAC address access, proxy protocol payload generation ¶ Refer-
ences: pull request 11173

• Add support to store mac address in query rings ¶ References: pull request 11184

• Add newThread() function ¶ References: pull request 11126

• Lua support to remove resource records from a response ¶ References: pull request 11098

• Add support to spoof a full self-generated response from lua ¶ References: pull request 11051

• Add a Lua FFI helper to generate proxy protocol payloads ¶ References: pull request 10949

• Add Lua bindings to get the list of network interfaces, addresses ¶ References: pull request 11017

• Add lua support to limit TTL values of responses ¶ References: pull request 11059

260 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/11163
https://github.com/PowerDNS/pdns/pull/11293
https://github.com/PowerDNS/pdns/pull/11027
https://github.com/PowerDNS/pdns/pull/10734
https://github.com/PowerDNS/pdns/issues/10468
https://github.com/PowerDNS/pdns/issues/6154
https://github.com/PowerDNS/pdns/pull/12473
https://github.com/PowerDNS/pdns/pull/11674
https://github.com/PowerDNS/pdns/pull/12417
https://github.com/PowerDNS/pdns/pull/12388
https://github.com/PowerDNS/pdns/pull/12384
https://github.com/PowerDNS/pdns/pull/12400
https://github.com/PowerDNS/pdns/pull/12385
https://github.com/PowerDNS/pdns/pull/12280
https://github.com/PowerDNS/pdns/pull/11020
https://github.com/PowerDNS/pdns/pull/11020
https://github.com/PowerDNS/pdns/pull/12065
https://github.com/PowerDNS/pdns/issues/12073
https://github.com/PowerDNS/pdns/pull/12074
https://github.com/PowerDNS/pdns/pull/12074
https://github.com/PowerDNS/pdns/pull/12082
https://github.com/PowerDNS/pdns/pull/12022
https://github.com/PowerDNS/pdns/pull/11994
https://github.com/PowerDNS/pdns/pull/12008
https://github.com/PowerDNS/pdns/pull/12007
https://github.com/PowerDNS/pdns/pull/11698
https://github.com/PowerDNS/pdns/pull/11526
https://github.com/PowerDNS/pdns/pull/11637
https://github.com/PowerDNS/pdns/pull/11606
https://github.com/PowerDNS/pdns/pull/11567
https://github.com/PowerDNS/pdns/issues/11434
https://github.com/PowerDNS/pdns/pull/11547
https://github.com/PowerDNS/pdns/issues/9994
https://github.com/PowerDNS/pdns/pull/11497
https://github.com/PowerDNS/pdns/pull/11173
https://github.com/PowerDNS/pdns/pull/11184
https://github.com/PowerDNS/pdns/pull/11126
https://github.com/PowerDNS/pdns/pull/11098
https://github.com/PowerDNS/pdns/pull/11051
https://github.com/PowerDNS/pdns/pull/10949
https://github.com/PowerDNS/pdns/pull/11017
https://github.com/PowerDNS/pdns/pull/11059

dnsdist

21.18.2 Improvements

• Merge the ‘main’ and ‘client’ DoH threads in single acceptor mode ¶ References: pull request 12386

• Speed up DoH handling by preventing allocations and copies ¶ References: pull request 12000

• OpenSSL 3.0: Offer TLS providers as an alternative to TLS engines ¶ References: pull request 12423

• Skip invalid OCSP files after issuing a warning ¶ References: #12341, pull request 12421

• Gracefully handle a failure to create a TLS server context ¶ References: pull request 12435

• Ignore unclean TLS session shutdown ¶ References: #12236, pull request 12237

• Skip DoT/DoH frontend when a tls configuration error occurs ¶ References: pull request 11675

• More useful default ports for DoT/DoH backends ¶ References: pull request 11415

• Libssl: Load only the ciphers and digests needed for TLS, not all of them ¶ References: pull request 11166

• Add support for metadata in protobuf messages ¶ References: pull request 12520

• Enable experimental kTLS support with OpenSSL on Linux ¶ References: pull request 12545

• Improve the scalability of MaxQPSIPRule() ¶ References: pull request 12537

• Reduce useless wake-ups from the event loop ¶ References: pull request 12276

• Faster cache-lookups for DNS over HTTPS queries ¶ References: pull request 11901

• Add a ‘single acceptor thread’ build option, reducing the number of threads ¶ References: pull request
12003

• Make recording queries/responses in the ringbuffers optional ¶ References: pull request 11883

• Slightly reduce contention around a pool’s servers ¶ References: pull request 11852

• Only call getsockname() once per incoming DoH connection ¶ References: pull request 11851

• Set TCP_NODELAY on the TCP connection to backends ¶ References: pull request 11734

• Avoid allocating memory in LB policies for small number of servers ¶ References: pull request 11689

• SuffixMatchTree: Improve lookup performance ¶ References: pull request 11624

• Change dns_tolower() and dns_toupper() to use a table ¶ References: pull request 11655

• Scan the UDP buckets only when we have outstanding queries ¶ References: #11576, pull request 11577

• Prevent allocations in two corner cases ¶ References: pull request 11531

• Only allocate the health-check mplexer when needed ¶ References: #11422, pull request 11437

• Defer the actual allocation of the ring buffer entries ¶ References: pull request 11171

• Add an option for unauthenticated access to the dashboard ¶ References: #10360, pull request 12474

• Add an option for unauthenticated access to the API ¶ References: pull request 11514

• Add support for custom prometheus names in custom metrics ¶ References: pull request 12553

• Slightly reduce the number of allocations in API calls ¶ References: pull request 11987

• Add more detailed metrics ¶ References: pull request 11716

• Compute backend latency earlier, to avoid internal latency ¶ References: pull request 11707

• Add ‘statistics’ to the general API endpoint ¶ References: pull request 11659

• Add a counter for the number of cache cleanups ¶ References: pull request 11656

• Enable Link-Time Optimization for our packages ¶ References: pull request 12543

• Stop using the deprecated boost::optional::get_value_or ¶ References: pull request 12538

• List version number early ¶ References: #10932, pull request 12530

21.18. 1.8.0-rc1 261

https://github.com/PowerDNS/pdns/pull/12386
https://github.com/PowerDNS/pdns/pull/12000
https://github.com/PowerDNS/pdns/pull/12423
https://github.com/PowerDNS/pdns/issues/12341
https://github.com/PowerDNS/pdns/pull/12421
https://github.com/PowerDNS/pdns/pull/12435
https://github.com/PowerDNS/pdns/issues/12236
https://github.com/PowerDNS/pdns/pull/12237
https://github.com/PowerDNS/pdns/pull/11675
https://github.com/PowerDNS/pdns/pull/11415
https://github.com/PowerDNS/pdns/pull/11166
https://github.com/PowerDNS/pdns/pull/12520
https://github.com/PowerDNS/pdns/pull/12545
https://github.com/PowerDNS/pdns/pull/12537
https://github.com/PowerDNS/pdns/pull/12276
https://github.com/PowerDNS/pdns/pull/11901
https://github.com/PowerDNS/pdns/pull/12003
https://github.com/PowerDNS/pdns/pull/12003
https://github.com/PowerDNS/pdns/pull/11883
https://github.com/PowerDNS/pdns/pull/11852
https://github.com/PowerDNS/pdns/pull/11851
https://github.com/PowerDNS/pdns/pull/11734
https://github.com/PowerDNS/pdns/pull/11689
https://github.com/PowerDNS/pdns/pull/11624
https://github.com/PowerDNS/pdns/pull/11655
https://github.com/PowerDNS/pdns/issues/11576
https://github.com/PowerDNS/pdns/pull/11577
https://github.com/PowerDNS/pdns/pull/11531
https://github.com/PowerDNS/pdns/issues/11422
https://github.com/PowerDNS/pdns/pull/11437
https://github.com/PowerDNS/pdns/pull/11171
https://github.com/PowerDNS/pdns/issues/10360
https://github.com/PowerDNS/pdns/pull/12474
https://github.com/PowerDNS/pdns/pull/11514
https://github.com/PowerDNS/pdns/pull/12553
https://github.com/PowerDNS/pdns/pull/11987
https://github.com/PowerDNS/pdns/pull/11716
https://github.com/PowerDNS/pdns/pull/11707
https://github.com/PowerDNS/pdns/pull/11659
https://github.com/PowerDNS/pdns/pull/11656
https://github.com/PowerDNS/pdns/pull/12543
https://github.com/PowerDNS/pdns/pull/12538
https://github.com/PowerDNS/pdns/issues/10932
https://github.com/PowerDNS/pdns/pull/12530

dnsdist

• Remove duplicate code in xdp (Y7n05h) ¶ References: pull request 12518

• Warn on unsupported parameters (Aki Tuomi) ¶ References: pull request 10115

• Add unit tests for the Lua FFI interface ¶ References: #12417, pull request 12469

• Refactor ‘cannot be used at runtime’ handling ¶ References: pull request 12492

• Fail if we can’t check the configuration file ¶ References: #7611, pull request 12481

• Add a configure option to enable LTO ¶ References: pull request 12441

• Add a new configure option to initialize automatic variables ¶ References: pull request 12427

• Enable FORTIFY_SOURCE=3 when supported by the compiler ¶ References: pull request 12381

• Proper accounting of response and cache hits ¶ References: pull request 12405

• Support OpenSSL 3.0 for ipcipher CA6 encryption/decryption ¶ References: pull request 12411

• Stronger guarantees against data race in the UDP path ¶ References: pull request 12383

• Add bindings for the current and query times in DQ/DR ¶ References: pull request 12402

• Raise RLIMIT_MEMLOCK automatically when eBPF is requested (Yogesh Singh) ¶ References: pull
request 11554

• Systemd: Add “After” dependency on time-sync.target (Kevin P. Fleming) ¶ References: #11153, pull
request 12248

• DNSName constructor use memchr instead of strchr and cleanup with string_view (Axel Viala) ¶ Refer-
ences: pull request 11863

• Fix building with boost < 1.56 ¶ References: #12142, pull request 12177

• Retain output when expunging from multiple caches (Christof Chen) ¶ References: #12075, pull request
12077

• Add build-time options to disable the dynamic blocks and UDP response delay ¶ References: pull request
11993

• Add missing thread names ¶ References: pull request 11992

• Add a build option (define) to prevent loading OpenSSL’s errors ¶ References: pull request 11988

• Properly load ciphers and digests with OpenSSL 3.0 ¶ References: #11853, pull request 11862

• Add local ComboAddress parameter for SBind() at TeeAction() (@FredericDT) ¶ References: pull request
11889

• Do not keep the mplexer created for the initial health-check around ¶ References: pull request 11844

• Use getrandom() if available ¶ References: pull request 11723

• Implement a limit of concurrent connections to a backend ¶ References: pull request 11713

• Fill ringbuffers with responses served from the cache ¶ References: #11585, pull request 11712

• Bind to the requested src interface without a src address ¶ References: pull request 11696

• Log listening addresses and version at the ‘info’ level ¶ References: pull request 11711

• Refactor sendfromto (Y7n05h) ¶ References: pull request 11651

• Optionally send ‘verbose’ messages to a file, and log them at ‘DEBUG’ level otherwise ¶ References: pull
request 11668

• Log when exiting due to a SIGTERM signal ¶ References: pull request 11669

• Add the protocol (Do53, DoT, DoH, . . .) of backends in the API ¶ References: pull request 11673

• Remove implicit type conversion (Y7n05h) ¶ References: #11619, pull request 11620

• Log when a console message exceeds the maximum size ¶ References: #11488, pull request 11543

262 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/12518
https://github.com/PowerDNS/pdns/pull/10115
https://github.com/PowerDNS/pdns/issues/12417
https://github.com/PowerDNS/pdns/pull/12469
https://github.com/PowerDNS/pdns/pull/12492
https://github.com/PowerDNS/pdns/issues/7611
https://github.com/PowerDNS/pdns/pull/12481
https://github.com/PowerDNS/pdns/pull/12441
https://github.com/PowerDNS/pdns/pull/12427
https://github.com/PowerDNS/pdns/pull/12381
https://github.com/PowerDNS/pdns/pull/12405
https://github.com/PowerDNS/pdns/pull/12411
https://github.com/PowerDNS/pdns/pull/12383
https://github.com/PowerDNS/pdns/pull/12402
https://github.com/PowerDNS/pdns/pull/11554
https://github.com/PowerDNS/pdns/pull/11554
https://github.com/PowerDNS/pdns/issues/11153
https://github.com/PowerDNS/pdns/pull/12248
https://github.com/PowerDNS/pdns/pull/12248
https://github.com/PowerDNS/pdns/pull/11863
https://github.com/PowerDNS/pdns/issues/12142
https://github.com/PowerDNS/pdns/pull/12177
https://github.com/PowerDNS/pdns/issues/12075
https://github.com/PowerDNS/pdns/pull/12077
https://github.com/PowerDNS/pdns/pull/12077
https://github.com/PowerDNS/pdns/pull/11993
https://github.com/PowerDNS/pdns/pull/11993
https://github.com/PowerDNS/pdns/pull/11992
https://github.com/PowerDNS/pdns/pull/11988
https://github.com/PowerDNS/pdns/issues/11853
https://github.com/PowerDNS/pdns/pull/11862
https://github.com/PowerDNS/pdns/pull/11889
https://github.com/PowerDNS/pdns/pull/11889
https://github.com/PowerDNS/pdns/pull/11844
https://github.com/PowerDNS/pdns/pull/11723
https://github.com/PowerDNS/pdns/pull/11713
https://github.com/PowerDNS/pdns/issues/11585
https://github.com/PowerDNS/pdns/pull/11712
https://github.com/PowerDNS/pdns/pull/11696
https://github.com/PowerDNS/pdns/pull/11711
https://github.com/PowerDNS/pdns/pull/11651
https://github.com/PowerDNS/pdns/pull/11668
https://github.com/PowerDNS/pdns/pull/11668
https://github.com/PowerDNS/pdns/pull/11669
https://github.com/PowerDNS/pdns/pull/11673
https://github.com/PowerDNS/pdns/issues/11619
https://github.com/PowerDNS/pdns/pull/11620
https://github.com/PowerDNS/pdns/issues/11488
https://github.com/PowerDNS/pdns/pull/11543

dnsdist

• Include the address of the backend in ‘relayed to’ messages ¶ References: pull request 11578

• Better log message when no downstream server are available ¶ References: pull request 11573

• Raise the number of entries in a packet cache to at least 1 ¶ References: #11383, pull request 11546

• Merge multiple parameters in newBPFFilter (Y7n05h) ¶ References: #11526, pull request 11535

• Reject BPFFilter::attachToAllBinds() at configuration time (Y7n05h) ¶ References: pull request 11523

• Add more build-time options to select features ¶ References: pull request 11515

• Multiplexer: Take the maximum number of events as a hint ¶ References: pull request 11517

• Add –log-timestamps flag ¶ References: pull request 11388

• Add a parameter to PoolAction to keep processing rules ¶ References: pull request 11174

• Fix build with OpenSSL 3.0.0 ¶ References: pull request 11196

• Build with -fvisibility=hidden by default ¶ References: pull request 11178

• Add a lot more of build-time options to select features ¶ References: pull request 10950

21.18.3 Bug Fixes

• Apply the max number of concurrent conns per client to DoH ¶ References: #12019, pull request 12483

• Fix the health-check timeout computation for DoH backend ¶ References: pull request 12327

• Fix a crash on a invalid protocol in DoH forwarded-for header ¶ References: #11604, pull request 11621

• Better handling of multiple carbon servers ¶ References: #10517, #11216, pull request 12424

• Include <cstdint> in dnsdist-protocols.hh (Sander Hoentjen) ¶ References: pull request 12569

• Fix the formatting of ‘showServers’ ¶ References: pull request 12535

• Properly record the incoming flags on a timeout ¶ References: #11905, pull request 12529

• Properly update rcode-related metrics on RCodeAction hits ¶ References: #11498, pull request 12484

• Handle out-of-memory exceptions in the UDP receiver thread ¶ References: pull request 12387

• Prevent an underflow of the TCP d_queued counter ¶ References: #12357, pull request 12365

• Properly handle single-SOA XFR responses ¶ References: #12099, pull request 12100

• Fix a bug in SetEDNSOptionAction ¶ References: #11728, pull request 11729

• Also reconnect on ENETUNREACH. (Asgeir Storesund Nilsen) ¶ References: #4155, pull request 11830

• Keep retained capabilities even when switching user/group ¶ References: pull request 11761

• Fix the number of concurrent queries on a backend TCP conn ¶ References: pull request 11718

• Fix invalid proxy protocol payload on a DoH TC to TCP retry ¶ References: pull request 11604

• Use the correct outgoing protocol in our ring buffers ¶ References: #11501, pull request 11545

21.18.4 Removals

• Remove the leak warning with GnuTLS >= 3.7.3 ¶ References: #11201, pull request 11324

21.18. 1.8.0-rc1 263

https://github.com/PowerDNS/pdns/pull/11578
https://github.com/PowerDNS/pdns/pull/11573
https://github.com/PowerDNS/pdns/issues/11383
https://github.com/PowerDNS/pdns/pull/11546
https://github.com/PowerDNS/pdns/issues/11526
https://github.com/PowerDNS/pdns/pull/11535
https://github.com/PowerDNS/pdns/pull/11523
https://github.com/PowerDNS/pdns/pull/11515
https://github.com/PowerDNS/pdns/pull/11517
https://github.com/PowerDNS/pdns/pull/11388
https://github.com/PowerDNS/pdns/pull/11174
https://github.com/PowerDNS/pdns/pull/11196
https://github.com/PowerDNS/pdns/pull/11178
https://github.com/PowerDNS/pdns/pull/10950
https://github.com/PowerDNS/pdns/issues/12019
https://github.com/PowerDNS/pdns/pull/12483
https://github.com/PowerDNS/pdns/pull/12327
https://github.com/PowerDNS/pdns/issues/11604
https://github.com/PowerDNS/pdns/pull/11621
https://github.com/PowerDNS/pdns/issues/10517
https://github.com/PowerDNS/pdns/issues/11216
https://github.com/PowerDNS/pdns/pull/12424
https://github.com/PowerDNS/pdns/pull/12569
https://github.com/PowerDNS/pdns/pull/12535
https://github.com/PowerDNS/pdns/issues/11905
https://github.com/PowerDNS/pdns/pull/12529
https://github.com/PowerDNS/pdns/issues/11498
https://github.com/PowerDNS/pdns/pull/12484
https://github.com/PowerDNS/pdns/pull/12387
https://github.com/PowerDNS/pdns/issues/12357
https://github.com/PowerDNS/pdns/pull/12365
https://github.com/PowerDNS/pdns/issues/12099
https://github.com/PowerDNS/pdns/pull/12100
https://github.com/PowerDNS/pdns/issues/11728
https://github.com/PowerDNS/pdns/pull/11729
https://github.com/PowerDNS/pdns/issues/4155
https://github.com/PowerDNS/pdns/pull/11830
https://github.com/PowerDNS/pdns/pull/11761
https://github.com/PowerDNS/pdns/pull/11718
https://github.com/PowerDNS/pdns/pull/11604
https://github.com/PowerDNS/pdns/issues/11501
https://github.com/PowerDNS/pdns/pull/11545
https://github.com/PowerDNS/pdns/issues/11201
https://github.com/PowerDNS/pdns/pull/11324

dnsdist

21.19 1.7.3

Released: 2nd of November 2022

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

dnsdist 1.7.3 contains no functional changes or bugfixes. This release strictly serves to bring dnsdist packages to
our EL9 and Ubuntu Jammy repositories, and upgrades the dnsdist Docker image from Debian buster to Debian
bullseye, as buster is officially EOL.

21.19.1 Improvements

• add el9/9stream targets ¶ References: pull request 11948

• docker images: upgrade to Debian bullseye ¶ References: pull request 11974

• dh_builddeb: force gzip compression (this makes the Ubuntu Jammy packages compatible with our Debian-
hosted repositories) ¶ References: pull request 11742

21.20 1.7.2

Released: 14th of June 2022

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.20.1 Improvements

• Scan the UDP buckets only when we have outstanding queries ¶ References: #11576, pull request 11579

• Only allocate the health-check mplexer when needed ¶ References: #11422, pull request 11580

• Add Lua bindings to access the DNS payload as a string ¶ References: #11606, pull request 11666

21.20.2 Bug Fixes

• Fix invalid proxy protocol payload on a DoH TC to TCP retry ¶ References: #11604, pull request 11665

• Fix a crash on a invalid protocol in DoH forwarded-for header ¶ References: #11621, pull request 11667

• Add missing descriptions for prometheus metrics ¶ References: #11602, pull request 11664

21.21 1.7.1

Released: 25th of April 2022

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.21.1 Improvements

• Remove the leak warning with GnuTLS >= 3.7.3 ¶ References: #11201, pull request 11324

• Fix compilation with OpenSSL 3.0.0 ¶ References: pull request 11195

• Docker images: remove capability requirements ¶ References: #11081, pull request 11094

• Docker image: install ca-certificates ¶ References: #11290, pull request 11292

264 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/11948
https://github.com/PowerDNS/pdns/pull/11974
https://github.com/PowerDNS/pdns/pull/11742
https://github.com/PowerDNS/pdns/issues/11576
https://github.com/PowerDNS/pdns/pull/11579
https://github.com/PowerDNS/pdns/issues/11422
https://github.com/PowerDNS/pdns/pull/11580
https://github.com/PowerDNS/pdns/issues/11606
https://github.com/PowerDNS/pdns/pull/11666
https://github.com/PowerDNS/pdns/issues/11604
https://github.com/PowerDNS/pdns/pull/11665
https://github.com/PowerDNS/pdns/issues/11621
https://github.com/PowerDNS/pdns/pull/11667
https://github.com/PowerDNS/pdns/issues/11602
https://github.com/PowerDNS/pdns/pull/11664
https://github.com/PowerDNS/pdns/issues/11201
https://github.com/PowerDNS/pdns/pull/11324
https://github.com/PowerDNS/pdns/pull/11195
https://github.com/PowerDNS/pdns/issues/11081
https://github.com/PowerDNS/pdns/pull/11094
https://github.com/PowerDNS/pdns/issues/11290
https://github.com/PowerDNS/pdns/pull/11292

dnsdist

• Work around a compiler bug seen on OpenBSD/amd64 using clang-13 ¶ References: #11113, pull request
11176

• Stop using the now deprecated and useless std::binary_function ¶ References: pull request 11197

• Add a ‘getAddressAndPort()’ method to DOHFrontend and TLSFrontend objects ¶ References: #11434,
pull request 11547

21.21.2 Bug Fixes

• Fix the health-check timeout for outgoing DoH connections ¶ References: #11250, pull request 11253

• Set Server Name Indication on outgoing TLS connections (DoT, DoH) ¶ References: #11249, pull request
11251

• Fix the latency-count metric ¶ References: #11239, pull request 11323

• Fix a use-after-free in case of a network error in the middle of a XFR query ¶ References: #11330, pull
request 11335

• Properly use eBPF when the DynBlock is not set ¶ References: #11504, pull request 11550

• Fix ‘inConfigCheck()’ ¶ References: #11254, pull request 11255

• Use the correct outgoing protocol in our ring buffers ¶ References: #11501, pull request 11545

• Raise the number of entries in a packet cache to at least 1 ¶ References: #11383, pull request 11546

• Fix wrong eBPF values (qtype, counter) being inserted for qnames ¶ References: pull request 11565

• The check interval applies to health-check, not timeouts ¶ References: #11375, pull request 11572

21.22 1.7.0

Released: 17th of January 2022

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.22.1 Bug Fixes

• Test the correct member in DynBlockRatioRule::warningRatioExceeded (Doug Freed) ¶ References:
#11131, pull request 11156

21.23 1.7.0-rc1

Released: 22nd of December 2021

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.23.1 Improvements

• Reuse and save the TLS session tickets in DoT healthchecks ¶ References: pull request 11037

21.23.2 Bug Fixes

• Fix a double-free when a DoH cross-protocol response is dropped ¶ References: pull request 11075

• Check the size of the query when re-sending a DoH query ¶ References: pull request 11079

21.22. 1.7.0 265

https://github.com/PowerDNS/pdns/issues/11113
https://github.com/PowerDNS/pdns/pull/11176
https://github.com/PowerDNS/pdns/pull/11176
https://github.com/PowerDNS/pdns/pull/11197
https://github.com/PowerDNS/pdns/issues/11434
https://github.com/PowerDNS/pdns/pull/11547
https://github.com/PowerDNS/pdns/issues/11250
https://github.com/PowerDNS/pdns/pull/11253
https://github.com/PowerDNS/pdns/issues/11249
https://github.com/PowerDNS/pdns/pull/11251
https://github.com/PowerDNS/pdns/pull/11251
https://github.com/PowerDNS/pdns/issues/11239
https://github.com/PowerDNS/pdns/pull/11323
https://github.com/PowerDNS/pdns/issues/11330
https://github.com/PowerDNS/pdns/pull/11335
https://github.com/PowerDNS/pdns/pull/11335
https://github.com/PowerDNS/pdns/issues/11504
https://github.com/PowerDNS/pdns/pull/11550
https://github.com/PowerDNS/pdns/issues/11254
https://github.com/PowerDNS/pdns/pull/11255
https://github.com/PowerDNS/pdns/issues/11501
https://github.com/PowerDNS/pdns/pull/11545
https://github.com/PowerDNS/pdns/issues/11383
https://github.com/PowerDNS/pdns/pull/11546
https://github.com/PowerDNS/pdns/pull/11565
https://github.com/PowerDNS/pdns/issues/11375
https://github.com/PowerDNS/pdns/pull/11572
https://github.com/PowerDNS/pdns/issues/11131
https://github.com/PowerDNS/pdns/pull/11156
https://github.com/PowerDNS/pdns/pull/11037
https://github.com/PowerDNS/pdns/pull/11075
https://github.com/PowerDNS/pdns/pull/11079

dnsdist

21.24 1.7.0-beta2

Released: 29th of November 2021

21.24.1 Improvements

• Add a function to know how many TLS sessions are currently cached ¶ References: pull request 10997

• Warn that GnuTLS 3.7.x leaks memory when validating certs ¶ References: pull request 11001

• Add a function to set the UDP recv/snd buffer sizes ¶ References: #10898, pull request 11008

• Add ‘showWebserverConfig’ ¶ References: #10135, pull request 11006

21.24.2 Bug Fixes

• Fix a memory leak when reusing TLS tickets for outgoing connections ¶ References: pull request 10999

• Fix compiler/static analyzer warnings ¶ References: #10988, pull request 10993

• Fix Lua parameters bound checks ¶ References: pull request 11007

• Add missing visibility attribute on dnsdist_ffi_dnsquestion_get_qname_hash ¶ References: pull request
11031

21.25 1.7.0-beta1

Released: 16th of November 2021

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.25.1 New Features

• Implement filesystem pinning for eBPF maps, drop and truncate via XDP (Pierre Grié) ¶ References: pull
request 10498, pull request 10883

• Add range support for dynamic blocks ¶ References: #4993, pull request 10815

• Add the ability to retain select capabilities at runtime ¶ References: pull request 10923

21.25.2 Improvements

• Support DoT, DoH and DNSCrypt transports for protobuf and dnstap ¶ References: #9103, pull request
10879

• Use the same outgoing TCP connection for different clients ¶ References: pull request 10862

• Read as many DoH responses as possible before yielding ¶ References: pull request 10875

• Stop over-allocating for DoH queries ¶ References: pull request 10876

• Convert make_pair to emplace (Rosen Penev) ¶ References: pull request 10646

• Add syslog identifier to service file ¶ References: #10651, pull request 10795

• Get rid of make_pair (Rosen Penev) ¶ References: pull request 10868

• Use make_unique instead of new (Rosen Penev) ¶ References: pull request 10870

• Handle existing EDNS content for SetMacAddrAction/SetEDNSOptionAction ¶ References: #4670, pull
request 10907

266 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/10997
https://github.com/PowerDNS/pdns/pull/11001
https://github.com/PowerDNS/pdns/issues/10898
https://github.com/PowerDNS/pdns/pull/11008
https://github.com/PowerDNS/pdns/issues/10135
https://github.com/PowerDNS/pdns/pull/11006
https://github.com/PowerDNS/pdns/pull/10999
https://github.com/PowerDNS/pdns/issues/10988
https://github.com/PowerDNS/pdns/pull/10993
https://github.com/PowerDNS/pdns/pull/11007
https://github.com/PowerDNS/pdns/pull/11031
https://github.com/PowerDNS/pdns/pull/11031
https://github.com/PowerDNS/pdns/pull/10498
https://github.com/PowerDNS/pdns/pull/10498
https://github.com/PowerDNS/pdns/pull/10883
https://github.com/PowerDNS/pdns/issues/4993
https://github.com/PowerDNS/pdns/pull/10815
https://github.com/PowerDNS/pdns/pull/10923
https://github.com/PowerDNS/pdns/issues/9103
https://github.com/PowerDNS/pdns/pull/10879
https://github.com/PowerDNS/pdns/pull/10879
https://github.com/PowerDNS/pdns/pull/10862
https://github.com/PowerDNS/pdns/pull/10875
https://github.com/PowerDNS/pdns/pull/10876
https://github.com/PowerDNS/pdns/pull/10646
https://github.com/PowerDNS/pdns/issues/10651
https://github.com/PowerDNS/pdns/pull/10795
https://github.com/PowerDNS/pdns/pull/10868
https://github.com/PowerDNS/pdns/pull/10870
https://github.com/PowerDNS/pdns/issues/4670
https://github.com/PowerDNS/pdns/pull/10907
https://github.com/PowerDNS/pdns/pull/10907

dnsdist

21.25.3 Bug Fixes

• Keep watching idle DoH backend connections ¶ References: pull request 10845

• Fix the cleaning of TCP, DoT and DoH connections to the backend ¶ References: pull request 10920

• Properly handle I/O exceptions in the health checker ¶ References: pull request 10874

• NetmaskTree: Drop the ‘noexcept’ qualifier on the TreeNode ctor ¶ References: pull request 10900

• Fix build without nghttp2 ¶ References: pull request 10922

• Remove debug print line flooding logs (Eugen Mayer) ¶ References: pull request 10935

• Credentials: EVP_PKEY_CTX_set1_scrypt_salt() takes an unsigned char* ¶ References: #10938, pull
request 10943

21.26 1.7.0-alpha2

Released: 19th of October 2021

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.26.1 New Features

• Add lua support for SetEDNSOptionAction ¶ References: pull request 10814

• Rule for basing decisions on outstanding queries in a pool (phonedph1) ¶ References: pull request 10832

21.26.2 Improvements

• Disable TLS renegotiation, release buffers for outgoing TLS ¶ References: pull request 10823

• Don’t create SSLKEYLOGFILE files with wide permissions ¶ References: pull request 10760

• Update existing tags when calling setTagAction and setTagResponseAction ¶ References: pull request
10767

• Fix the unit tests to handle v4-only or v6-only connectivity ¶ References: #10403, pull request 10775

• Improve the coverage of the outgoing DoH code ¶ References: pull request 10782

• Allow skipping arbitrary EDNS options when computing packet hash ¶ References: pull request 10791

• Add incoming and outgoing protocols to grepq ¶ References: pull request 10833

• Allow setting the block reason from the SMT callback ¶ References: #10559, pull request 10835

• Clear the UDP states of TCP-only backends ¶ References: pull request 10844

• Replace shared by unique ptrs, reduce structs size ¶ References: pull request 10846

21.26.3 Bug Fixes

• Better handling of outgoing DoH workers ¶ References: #10771, pull request 10772

• Properly cache UDP queries passed to a TCP/DoT/DoH backend ¶ References: pull request 10787

• Use per-thread credentials for GnuTLS client connections ¶ References: pull request 10841

• Only set recursion protection once we know we do not return ¶ References: pull request 10848

21.26. 1.7.0-alpha2 267

https://github.com/PowerDNS/pdns/pull/10845
https://github.com/PowerDNS/pdns/pull/10920
https://github.com/PowerDNS/pdns/pull/10874
https://github.com/PowerDNS/pdns/pull/10900
https://github.com/PowerDNS/pdns/pull/10922
https://github.com/PowerDNS/pdns/pull/10935
https://github.com/PowerDNS/pdns/issues/10938
https://github.com/PowerDNS/pdns/pull/10943
https://github.com/PowerDNS/pdns/pull/10943
https://github.com/PowerDNS/pdns/pull/10814
https://github.com/PowerDNS/pdns/pull/10832
https://github.com/PowerDNS/pdns/pull/10823
https://github.com/PowerDNS/pdns/pull/10760
https://github.com/PowerDNS/pdns/pull/10767
https://github.com/PowerDNS/pdns/pull/10767
https://github.com/PowerDNS/pdns/issues/10403
https://github.com/PowerDNS/pdns/pull/10775
https://github.com/PowerDNS/pdns/pull/10782
https://github.com/PowerDNS/pdns/pull/10791
https://github.com/PowerDNS/pdns/pull/10833
https://github.com/PowerDNS/pdns/issues/10559
https://github.com/PowerDNS/pdns/pull/10835
https://github.com/PowerDNS/pdns/pull/10844
https://github.com/PowerDNS/pdns/pull/10846
https://github.com/PowerDNS/pdns/issues/10771
https://github.com/PowerDNS/pdns/pull/10772
https://github.com/PowerDNS/pdns/pull/10787
https://github.com/PowerDNS/pdns/pull/10841
https://github.com/PowerDNS/pdns/pull/10848

dnsdist

21.27 1.7.0-alpha1

Released: 23rd of September 2021

Please review the Upgrade Guide before upgrading from versions < 1.7.x.

21.27.1 New Features

• Implementation of DoH between dnsdist and the backend ¶ References: pull request 10635

• Implement cross-protocol queries, including outgoing DNS over TLS ¶ References: pull request 10338

• Add support for Lua per-thread FFI rules and actions ¶ References: pull request 10501

• Add FFI functions to spoof multiple raw values ¶ References: #10456, pull request 10532

• Add support for range-based lookups into a Key-Value store ¶ References: #10520, pull request 10525

• Implement SpoofSVCAction to return SVC responses ¶ References: #10367, pull request 10597

21.27.2 Improvements

• Don’t look up the LMDB dbi by name for every query ¶ References: pull request 10520

• Move to hashed passwords for the web interface ¶ References: #7937, pull request 10157

• Fix ‘temporary used in loop’ warnings reported by g++ 11.1.0 ¶ References: pull request 10429

• Skip some memory allocations in client mode to reduce memory usage ¶ References: pull request 10441

• Support multiple ip addresses for dnsdist-resolver lua script (Wim) ¶ References: pull request 10414

• Make DNSDist XFR aware when transfer is finished (Dimitrios Mavrommatis) ¶ References: #10436, pull
request 10489

• Do not report latency metrics of down upstream servers (Holger Hoffstätte) ¶ References: #10500, pull
request 10508

• Carry the exact incoming protocol (Do53, DNSCrypt, DoT, DoH) in DQ ¶ References: #10338, pull request
10537

• Implement ‘reload()’ to rotate Log(Response)Action’s log file ¶ References: #10502, pull request 10527

• Document that setECSOverride has its drawbacks (Andreas Jakum) ¶ References: pull request 10626

• Convert dnsdist and the recursor to LockGuarded ¶ References: pull request 10649

• Handle waiting for a descriptor to become readable OR writable ¶ References: pull request 10631

• Clean up a bit of “cast from type [. . .] casts away qualifiers” warnings ¶ References: pull request 10687

• Reorganize the IDState and Rings fields to reduce memory usage

¶ References: pull request 10381

21.27.3 Bug Fixes

• Catch FDMultiplexerException in IOStateHandler’s destructor ¶ References: pull request 10656

• Resizing LMDB map size while there might be open transactions is unsafe ¶ References: pull request 10672

• Ignore TCAction over TCP ¶ References: #10693, pull request 10695

• Stop raising the number of TCP workers to the number of TCP binds ¶ References: pull request 10704

• Handle exception raised in IOStateGuard’s destructor ¶ References: pull request 10724

268 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/10635
https://github.com/PowerDNS/pdns/pull/10338
https://github.com/PowerDNS/pdns/pull/10501
https://github.com/PowerDNS/pdns/issues/10456
https://github.com/PowerDNS/pdns/pull/10532
https://github.com/PowerDNS/pdns/issues/10520
https://github.com/PowerDNS/pdns/pull/10525
https://github.com/PowerDNS/pdns/issues/10367
https://github.com/PowerDNS/pdns/pull/10597
https://github.com/PowerDNS/pdns/pull/10520
https://github.com/PowerDNS/pdns/issues/7937
https://github.com/PowerDNS/pdns/pull/10157
https://github.com/PowerDNS/pdns/pull/10429
https://github.com/PowerDNS/pdns/pull/10441
https://github.com/PowerDNS/pdns/pull/10414
https://github.com/PowerDNS/pdns/issues/10436
https://github.com/PowerDNS/pdns/pull/10489
https://github.com/PowerDNS/pdns/pull/10489
https://github.com/PowerDNS/pdns/issues/10500
https://github.com/PowerDNS/pdns/pull/10508
https://github.com/PowerDNS/pdns/pull/10508
https://github.com/PowerDNS/pdns/issues/10338
https://github.com/PowerDNS/pdns/pull/10537
https://github.com/PowerDNS/pdns/pull/10537
https://github.com/PowerDNS/pdns/issues/10502
https://github.com/PowerDNS/pdns/pull/10527
https://github.com/PowerDNS/pdns/pull/10626
https://github.com/PowerDNS/pdns/pull/10649
https://github.com/PowerDNS/pdns/pull/10631
https://github.com/PowerDNS/pdns/pull/10687
https://github.com/PowerDNS/pdns/pull/10381
https://github.com/PowerDNS/pdns/pull/10656
https://github.com/PowerDNS/pdns/pull/10672
https://github.com/PowerDNS/pdns/issues/10693
https://github.com/PowerDNS/pdns/pull/10695
https://github.com/PowerDNS/pdns/pull/10704
https://github.com/PowerDNS/pdns/pull/10724

dnsdist

21.28 1.6.1

Released: 15th of September 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.28.1 New Features

• Add the missing DOHFronted::loadNewCertificatesAndKeys() ¶ References: #10418, pull request 10550

• Implement a web endpoint to get metrics for only one pool ¶ References: #10482, pull request 10560

21.28.2 Bug Fixes

• Set the dnstap/protobuf transport to TCP for DoH queries ¶ References: #10497, pull request 10538

• Backport a missing mutex header ¶ References: pull request 10438

• Properly handle ECS for queries with ancount or nscount > 0 ¶ References: #10419, pull request 10619

• Catch FDMultiplexerException in IOStateHandler’s destructor ¶ References: pull request 10656

• Fix outstanding counter issue on TCP error ¶ References: #10705, pull request 10706

21.29 1.6.0

Released: 11th of May 2021

21.30 1.5.2

Released: 10th of May 2021

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.30.1 Bug Fixes

• Fix a crash when a DoH responses map is updated at runtime ¶ References: #9934, pull request 9936

• Fix SNI on resumed sessions by acknowledging the name sent by the client ¶ References: #9921, pull
request 9922

• Fix the DNSName move assignment operator ¶ References: pull request 9749

• Fix a typo in prometheus metrics dnsdist_frontend_tlshandshakefailures #9728 (AppliedPrivacy) ¶ Refer-
ences: #9728, pull request 9729

• Make: two fixes ¶ References: pull request 9583

• Fix eBPF filtering of long qnames ¶ References: #9689, pull request 9717

• Fix a hang when removing a server with more than one socket ¶ References: pull request 9900

• Fix Dynamic Block RCode rules messing up the queries count ¶ References: #9756, pull request 9980

• Fix EDNS in ServFail generated when no server is available ¶ References: #10006, pull request 10012

• Prevent a crash with DynBPF objects in client mode ¶ References: #10090, pull request 10095

• Add missing getEDNSOptions and getDO bindings for DNSResponse ¶ References: pull request 10355

21.28. 1.6.1 269

https://github.com/PowerDNS/pdns/issues/10418
https://github.com/PowerDNS/pdns/pull/10550
https://github.com/PowerDNS/pdns/issues/10482
https://github.com/PowerDNS/pdns/pull/10560
https://github.com/PowerDNS/pdns/issues/10497
https://github.com/PowerDNS/pdns/pull/10538
https://github.com/PowerDNS/pdns/pull/10438
https://github.com/PowerDNS/pdns/issues/10419
https://github.com/PowerDNS/pdns/pull/10619
https://github.com/PowerDNS/pdns/pull/10656
https://github.com/PowerDNS/pdns/issues/10705
https://github.com/PowerDNS/pdns/pull/10706
https://github.com/PowerDNS/pdns/issues/9934
https://github.com/PowerDNS/pdns/pull/9936
https://github.com/PowerDNS/pdns/issues/9921
https://github.com/PowerDNS/pdns/pull/9922
https://github.com/PowerDNS/pdns/pull/9922
https://github.com/PowerDNS/pdns/pull/9749
https://github.com/PowerDNS/pdns/issues/9728
https://github.com/PowerDNS/pdns/pull/9729
https://github.com/PowerDNS/pdns/pull/9583
https://github.com/PowerDNS/pdns/issues/9689
https://github.com/PowerDNS/pdns/pull/9717
https://github.com/PowerDNS/pdns/pull/9900
https://github.com/PowerDNS/pdns/issues/9756
https://github.com/PowerDNS/pdns/pull/9980
https://github.com/PowerDNS/pdns/issues/10006
https://github.com/PowerDNS/pdns/pull/10012
https://github.com/PowerDNS/pdns/issues/10090
https://github.com/PowerDNS/pdns/pull/10095
https://github.com/PowerDNS/pdns/pull/10355

dnsdist

21.31 1.6.0-rc2

Released: 4th of May 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.31.1 Improvements

• Make the backend queryLoad and dropRate values atomic ¶ References: pull request 10323

21.31.2 Bug Fixes

• Fix missing locks in DNSCrypt certificates management ¶ References: pull request 10346

• Only use eBPF for “drop” actions, clean up more often ¶ References: #10324, pull request 10327

21.32 1.6.0-rc1

Released: 20th of April 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.32.1 Improvements

• Replace pthread_rwlock with std::shared_mutex ¶ References: #10209, pull request 10216

• Also disable PMTU for v6 ¶ References: pull request 10264

21.32.2 Bug Fixes

• Lua: don’t destroy keys during table iteration ¶ References: pull request 10171

• Add missing getEDNSOptions and getDO bindings for DNSResponse ¶ References: #10262, pull request
10267

• Fix some issues reported by Thread Sanitizer ¶ References: pull request 10274

21.33 1.6.0-alpha3

Released: 29th of March 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.33.1 Improvements

• Set OpenSSL to release buffers when idle, saves 35 kB per connection ¶ References: pull request 10179

• Unify certificate reloading syntaxes ¶ References: pull request 10214

• Disable TLS renegotiation by default ¶ References: pull request 10218

• Improve TCP connection reuse, add metrics ¶ References: pull request 10156

• Using DATA to report memory usage is unreliable, start using RES instead, as it seems reliable and relevant
¶ References: #7591, pull request 10161

270 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/10323
https://github.com/PowerDNS/pdns/pull/10346
https://github.com/PowerDNS/pdns/issues/10324
https://github.com/PowerDNS/pdns/pull/10327
https://github.com/PowerDNS/pdns/issues/10209
https://github.com/PowerDNS/pdns/pull/10216
https://github.com/PowerDNS/pdns/pull/10264
https://github.com/PowerDNS/pdns/pull/10171
https://github.com/PowerDNS/pdns/issues/10262
https://github.com/PowerDNS/pdns/pull/10267
https://github.com/PowerDNS/pdns/pull/10267
https://github.com/PowerDNS/pdns/pull/10274
https://github.com/PowerDNS/pdns/pull/10179
https://github.com/PowerDNS/pdns/pull/10214
https://github.com/PowerDNS/pdns/pull/10218
https://github.com/PowerDNS/pdns/pull/10156
https://github.com/PowerDNS/pdns/issues/7591
https://github.com/PowerDNS/pdns/pull/10161

dnsdist

• Add a metric for TCP listen queue full events ¶ References: pull request 10184

• Enable sharding by default, greater pipe buffer sizes ¶ References: pull request 10204

• Add limits for cached TCP connections, metrics ¶ References: pull request 10207

21.33.2 Bug Fixes

• Fix the handling of DoH queries with a non-zero ID ¶ References: pull request 10208

• Fix the TCP connect timeout, add metrics ¶ References: pull request 10201

21.34 1.6.0-alpha2

Released: 4th of March 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.34.1 New Features

• Add option to spoofRawAction to spoof multiple answers (Sander Hoentjen) ¶ References: pull request
10063

• Add ‘spoof’ and ‘spoofRaw’ Lua bindings ¶ References: pull request 10073

21.34.2 Improvements

• Make NetmaskTree::fork() a bit easier to understand ¶ References: #10035, pull request 10046

• Do not update the TCP error counters on idle states ¶ References: pull request 10131

• Bind __tostring instead of toString for Lua, so that conversion to string works automatically (Aki
Tuomi)

¶ References: pull request 9361

21.34.3 Bug Fixes

• Remove forgotten debug line in the web server ¶ References: #10049, pull request 10050

• Create TCP worker threads before acceptors ones ¶ References: pull request 10088

• Prevent a crash with DynBPF objects in client mode ¶ References: #10090, pull request 10095

• Fix several bugs in the TCP code path, add unit tests ¶ References: pull request 10108

• Fix size check during trailing data addition, regression tests ¶ References: pull request 10139

• Clean up expired entries from all the packet cache’s shards ¶ References: pull request 10133

21.35 1.6.0-alpha1

Released: 2nd of February 2021

Please review the Upgrade Guide before upgrading from versions < 1.6.x.

21.34. 1.6.0-alpha2 271

https://github.com/PowerDNS/pdns/pull/10184
https://github.com/PowerDNS/pdns/pull/10204
https://github.com/PowerDNS/pdns/pull/10207
https://github.com/PowerDNS/pdns/pull/10208
https://github.com/PowerDNS/pdns/pull/10201
https://github.com/PowerDNS/pdns/pull/10063
https://github.com/PowerDNS/pdns/pull/10063
https://github.com/PowerDNS/pdns/pull/10073
https://github.com/PowerDNS/pdns/issues/10035
https://github.com/PowerDNS/pdns/pull/10046
https://github.com/PowerDNS/pdns/pull/10131
https://github.com/PowerDNS/pdns/pull/9361
https://github.com/PowerDNS/pdns/issues/10049
https://github.com/PowerDNS/pdns/pull/10050
https://github.com/PowerDNS/pdns/pull/10088
https://github.com/PowerDNS/pdns/issues/10090
https://github.com/PowerDNS/pdns/pull/10095
https://github.com/PowerDNS/pdns/pull/10108
https://github.com/PowerDNS/pdns/pull/10139
https://github.com/PowerDNS/pdns/pull/10133

dnsdist

21.35.1 New Features

• Add per-thread Lua FFI load-balancing policies ¶ References: pull request 9175

• Implement Lua custom web endpoints ¶ References: #9120, pull request 9676

• Implement TCP out-of-order ¶ References: pull request 9582

• Add support for incoming Proxy Protocol ¶ References: pull request 9616

• Add SkipCacheResponseAction ¶ References: #9536, pull request 9960

21.35.2 Improvements

• Use more of systemd’s sandboxing options when available ¶ References: pull request 8969

• Add an option to allow sub-paths for DoH ¶ References: pull request 9962

• Prioritize ChaCha20-Poly1305 when client does (Sukhbir Singh) ¶ References: pull request 9510

• Start all TCP worker threads on startup ¶ References: pull request 9957

• Speed up the round robin policy ¶ References: pull request 9382

• Avoid unnecessary allocations and copies with DNSName::toDNSString() ¶ References: pull request 9424

• Get rid of allocations in the packet cache’s fast path ¶ References: #8993, pull request 9420

• Fix the DNSName move assignment operator ¶ References: pull request 9749

• Don’t copy the policy for every query ¶ References: pull request 9850

• UUID: Use the non-cryptographic variant of the boost::uuid ¶ References: pull request 9832

• Use an eBPF filter for Dynamic blocks when available ¶ References: #6763, #9756, pull request 9782

• Use protozero for Protocol Buffer operations ¶ References: #9780, #9781, pull request 9843

• Limit the number of concurrent console and web connections ¶ References: #4978, pull request 9997

• Add prometheus metrics for top Dynamic Blocks entries ¶ References: pull request 9756

• Add per connection queries count and duration stats for DoH ¶ References: pull request 9738

• Add Lua bindings to get a server’s latency ¶ References: pull request 9273

• Wrap more FILE objects in smart pointers ¶ References: pull request 9225

• Set the default EDNS buffer size on generated answers to 1232 ¶ References: pull request 9049

• Add support for FreeBSD’s SO_REUSEPORT_LB ¶ References: #9156, pull request 9157

• Accept string in DNSDistPacketCache:expungeByName ¶ References: pull request 9428

• DNSName: add toDNSString convenience function ¶ References: pull request 9466

• Skip EDNS Cookies in the packet cache ¶ References: #5131, pull request 8993

• Add the query payload size to the verbose log over TCP ¶ References: pull request 9677

• Add the response code in the packet cache dump ¶ References: #9274, pull request 9737

• Add an optional name to rules ¶ References: pull request 9746

• Add the ability to set ACL from a file (Matti Hiljanen) ¶ References: pull request 9822

• Add a Lua binding for the number of queries dropped by a server ¶ References: #9861, pull request 9862

• Move to c++17 ¶ References: pull request 9913

• Fix warnings on autoconf 2.70 ¶ References: #9918, pull request 9920

• Reduce diff to upstream yahttp, fixing a few CodeQL reports ¶ References: pull request 9955

272 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/9175
https://github.com/PowerDNS/pdns/issues/9120
https://github.com/PowerDNS/pdns/pull/9676
https://github.com/PowerDNS/pdns/pull/9582
https://github.com/PowerDNS/pdns/pull/9616
https://github.com/PowerDNS/pdns/issues/9536
https://github.com/PowerDNS/pdns/pull/9960
https://github.com/PowerDNS/pdns/pull/8969
https://github.com/PowerDNS/pdns/pull/9962
https://github.com/PowerDNS/pdns/pull/9510
https://github.com/PowerDNS/pdns/pull/9957
https://github.com/PowerDNS/pdns/pull/9382
https://github.com/PowerDNS/pdns/pull/9424
https://github.com/PowerDNS/pdns/issues/8993
https://github.com/PowerDNS/pdns/pull/9420
https://github.com/PowerDNS/pdns/pull/9749
https://github.com/PowerDNS/pdns/pull/9850
https://github.com/PowerDNS/pdns/pull/9832
https://github.com/PowerDNS/pdns/issues/6763
https://github.com/PowerDNS/pdns/issues/9756
https://github.com/PowerDNS/pdns/pull/9782
https://github.com/PowerDNS/pdns/issues/9780
https://github.com/PowerDNS/pdns/issues/9781
https://github.com/PowerDNS/pdns/pull/9843
https://github.com/PowerDNS/pdns/issues/4978
https://github.com/PowerDNS/pdns/pull/9997
https://github.com/PowerDNS/pdns/pull/9756
https://github.com/PowerDNS/pdns/pull/9738
https://github.com/PowerDNS/pdns/pull/9273
https://github.com/PowerDNS/pdns/pull/9225
https://github.com/PowerDNS/pdns/pull/9049
https://github.com/PowerDNS/pdns/issues/9156
https://github.com/PowerDNS/pdns/pull/9157
https://github.com/PowerDNS/pdns/pull/9428
https://github.com/PowerDNS/pdns/pull/9466
https://github.com/PowerDNS/pdns/issues/5131
https://github.com/PowerDNS/pdns/pull/8993
https://github.com/PowerDNS/pdns/pull/9677
https://github.com/PowerDNS/pdns/issues/9274
https://github.com/PowerDNS/pdns/pull/9737
https://github.com/PowerDNS/pdns/pull/9746
https://github.com/PowerDNS/pdns/pull/9822
https://github.com/PowerDNS/pdns/issues/9861
https://github.com/PowerDNS/pdns/pull/9862
https://github.com/PowerDNS/pdns/pull/9913
https://github.com/PowerDNS/pdns/issues/9918
https://github.com/PowerDNS/pdns/pull/9920
https://github.com/PowerDNS/pdns/pull/9955

dnsdist

• Handle syslog facility as string, document the numerical one ¶ References: #9383, pull request 9989

• Deprecate parameters to webserver(), add ‘statsRequireAuthentication’ parameter ¶ References: #8710,
#9311, pull request 9972

• Add a counter for queries truncated because of a rule ¶ References: #9357, pull request 9992

• Replace offensive terms in our code and documentation ¶ References: pull request 9993

• Use aligned atomics to prevent false sharing ¶ References: #9455, pull request 9998

• Unify non-terminal actions as SetXXXAction() ¶ References: #8118, pull request 9974

• Accept a NMG to fill DynBlockRulesGroup ranges ¶ References: #9545, pull request 10015

• Silence clang 12 warning ¶ References: pull request 10023

• Fix a few warnings reported by clang’s static analyzer and cppcheck ¶ References: pull request 10035

21.35.3 Bug Fixes

• Fix a crash when a DoH responses map is updated at runtime ¶ References: #9927, pull request 9934

• Fix SNI on resumed sessions by acknowledging the name sent by the client ¶ References: pull request 9921

• Use toStringWithPort instead of manual addr/port concat (Mischan Toosarani-Hausberger) ¶ References:
#9075, pull request 9222

• Force a reconnection when a downstream transitions to the UP state (Nuitari, Stephane Bakhos) ¶ Refer-
ences: pull request 9275

• Handle EINTR in DelayPipe ¶ References: pull request 9381

• Handle empty DNSNames in grepq() ¶ References: pull request 9431

• Make: two fixes ¶ References: pull request 9583

• Fix eBPF filtering of long qnames ¶ References: #9626, pull request 9689

• Improve const-correctness of Lua bindings (Georgeto) ¶ References: pull request 9721

• Fix a hang when removing a server with more than one socket ¶ References: pull request 9900

• Appease clang++ 12 ASAN on macOS ¶ References: pull request 9925

• Bunch of signed vs unsigned warnings ¶ References: pull request 9937

• Send a NotImp answer on empty (qdcount=0) queries ¶ References: #9961, pull request 9991

• Don’t apply QPS to backend server on cache hits ¶ References: #7038, pull request 9999

• Fix EDNS in ServFail generated when no server is available ¶ References: #10006, pull request 10012

21.35.4 Removals

• Rename topRule() and friends ¶ References: pull request 9532

• Remove useless second argument for SpoofAction ¶ References: #9783, pull request 9784

21.36 1.5.1

Released: 1st of October 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.36. 1.5.1 273

https://github.com/PowerDNS/pdns/issues/9383
https://github.com/PowerDNS/pdns/pull/9989
https://github.com/PowerDNS/pdns/issues/8710
https://github.com/PowerDNS/pdns/issues/9311
https://github.com/PowerDNS/pdns/pull/9972
https://github.com/PowerDNS/pdns/issues/9357
https://github.com/PowerDNS/pdns/pull/9992
https://github.com/PowerDNS/pdns/pull/9993
https://github.com/PowerDNS/pdns/issues/9455
https://github.com/PowerDNS/pdns/pull/9998
https://github.com/PowerDNS/pdns/issues/8118
https://github.com/PowerDNS/pdns/pull/9974
https://github.com/PowerDNS/pdns/issues/9545
https://github.com/PowerDNS/pdns/pull/10015
https://github.com/PowerDNS/pdns/pull/10023
https://github.com/PowerDNS/pdns/pull/10035
https://github.com/PowerDNS/pdns/issues/9927
https://github.com/PowerDNS/pdns/pull/9934
https://github.com/PowerDNS/pdns/pull/9921
https://github.com/PowerDNS/pdns/issues/9075
https://github.com/PowerDNS/pdns/pull/9222
https://github.com/PowerDNS/pdns/pull/9275
https://github.com/PowerDNS/pdns/pull/9381
https://github.com/PowerDNS/pdns/pull/9431
https://github.com/PowerDNS/pdns/pull/9583
https://github.com/PowerDNS/pdns/issues/9626
https://github.com/PowerDNS/pdns/pull/9689
https://github.com/PowerDNS/pdns/pull/9721
https://github.com/PowerDNS/pdns/pull/9900
https://github.com/PowerDNS/pdns/pull/9925
https://github.com/PowerDNS/pdns/pull/9937
https://github.com/PowerDNS/pdns/issues/9961
https://github.com/PowerDNS/pdns/pull/9991
https://github.com/PowerDNS/pdns/issues/7038
https://github.com/PowerDNS/pdns/pull/9999
https://github.com/PowerDNS/pdns/issues/10006
https://github.com/PowerDNS/pdns/pull/10012
https://github.com/PowerDNS/pdns/pull/9532
https://github.com/PowerDNS/pdns/issues/9783
https://github.com/PowerDNS/pdns/pull/9784

dnsdist

21.36.1 Improvements

• Add the ‘clearConsoleHistory’ command ¶ References: #9372, pull request 9540

21.36.2 Bug Fixes

• Stop the related responder thread when a backend is removed ¶ References: #9372, pull request 9541

• Fix getEDNSOptions() for {AN,NS}COUNT != 0 and ARCOUNT = 0 ¶ References: pull request 9542

• Fix building with LLVM11 (@RvdE) ¶ References: pull request 9543

• Only add EDNS on negative answers if the query had EDNS ¶ References: pull request 9555

21.37 1.5.0

Released: 30th of July 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.37.1 Improvements

• Use explicit flag for the specific version of c++ we are targeting. ¶ References: pull request 9231

• Prevent a copy of a pool’s backends when selecting a server. ¶ References: pull request 9360

21.37.2 Bug Fixes

• Fix compilation with h2o_socket_get_ssl_server_name(). ¶ References: pull request 9344

• Prevent a possible overflow via large Proxy Protocol values. (Valentei Sergey) ¶ References: pull request
9320

• Avoid name clashes on Solaris derived systems. ¶ References: #9279, pull request 9348

• Resize hostname to final size in getCarbonHostname(). (Aki Tuomi) ¶ References: pull request 9343

• Fix compilation on OpenBSD/amd64. ¶ References: pull request 9346

• Handle calling PacketCache methods on a nil object. ¶ References: pull request 9356

21.38 1.5.0-rc4

Released: 7th of July 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.38.1 Bug Fixes

• Prevent a race between the DoH handling threads ¶ References: pull request 9278

21.39 1.5.0-rc3

Released: 18th of June 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

274 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/9372
https://github.com/PowerDNS/pdns/pull/9540
https://github.com/PowerDNS/pdns/issues/9372
https://github.com/PowerDNS/pdns/pull/9541
https://github.com/PowerDNS/pdns/pull/9542
https://github.com/PowerDNS/pdns/pull/9543
https://github.com/PowerDNS/pdns/pull/9555
https://github.com/PowerDNS/pdns/pull/9231
https://github.com/PowerDNS/pdns/pull/9360
https://github.com/PowerDNS/pdns/pull/9344
https://github.com/PowerDNS/pdns/pull/9320
https://github.com/PowerDNS/pdns/pull/9320
https://github.com/PowerDNS/pdns/issues/9279
https://github.com/PowerDNS/pdns/pull/9348
https://github.com/PowerDNS/pdns/pull/9343
https://github.com/PowerDNS/pdns/pull/9346
https://github.com/PowerDNS/pdns/pull/9356
https://github.com/PowerDNS/pdns/pull/9278

dnsdist

21.39.1 New Features

• Implement an ACL in the internal web server ¶ References: pull request 9229

21.39.2 Improvements

• Less negatives in secpoll error messages improves readability. ¶ References: pull request 9100

• Use std::string_view when available (Rosen Penev) ¶ References: pull request 9207

• Clean up dnsdistconf.lua as a default configuration file ¶ References: #8038, pull request 9238

• Add optional masks to KeyValueLookupKeySourceIP ¶ References: pull request 9244

21.39.3 Bug Fixes

• Use non-blocking pipes to pass DoH queries/responses around ¶ References: #9206, pull request 9211

• Fix compilation on systems that do not define HOST_NAME_MAX ¶ References: #9125, pull request
9127

• Do not use using namespace std; ¶ References: pull request 9213

21.40 1.5.0-rc2

Released: 13th of May 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.40.1 Improvements

• Add the unit to the help for latency buckets ¶ References: pull request 9084

• Avoid copies in for loops ¶ References: pull request 9042

• Build with -Wmissing-declarations -Wredundant-decls ¶ References: pull request 9054

• Use std::shuffle instead of std::random_shuffle ¶ References: #9004, pull request 9016

• Get rid of a naked pointer in the /dev/poll event multiplexer ¶ References: pull request 9053

• A few warnings fixed, reported by clang on OpenBSD ¶ References: pull request 9059

• Wrap pthread objects ¶ References: pull request 9067

• NetmaskTree: do not test node for null, the loop guarantees node is not null. ¶ References: pull request
9078

21.40.2 Bug Fixes

• Fix duplicated HTTP/1 counter in ‘showDOHFrontends()’ ¶ References: pull request 9068

• Fix compilation of the ports event multiplexer ¶ References: #9025, pull request 9031

• Gracefully handle a failure to remove FD on (re)-connection ¶ References: pull request 9057

21.40. 1.5.0-rc2 275

https://github.com/PowerDNS/pdns/pull/9229
https://github.com/PowerDNS/pdns/pull/9100
https://github.com/PowerDNS/pdns/pull/9207
https://github.com/PowerDNS/pdns/issues/8038
https://github.com/PowerDNS/pdns/pull/9238
https://github.com/PowerDNS/pdns/pull/9244
https://github.com/PowerDNS/pdns/issues/9206
https://github.com/PowerDNS/pdns/pull/9211
https://github.com/PowerDNS/pdns/issues/9125
https://github.com/PowerDNS/pdns/pull/9127
https://github.com/PowerDNS/pdns/pull/9127
https://github.com/PowerDNS/pdns/pull/9213
https://github.com/PowerDNS/pdns/pull/9084
https://github.com/PowerDNS/pdns/pull/9042
https://github.com/PowerDNS/pdns/pull/9054
https://github.com/PowerDNS/pdns/issues/9004
https://github.com/PowerDNS/pdns/pull/9016
https://github.com/PowerDNS/pdns/pull/9053
https://github.com/PowerDNS/pdns/pull/9059
https://github.com/PowerDNS/pdns/pull/9067
https://github.com/PowerDNS/pdns/pull/9078
https://github.com/PowerDNS/pdns/pull/9078
https://github.com/PowerDNS/pdns/pull/9068
https://github.com/PowerDNS/pdns/issues/9025
https://github.com/PowerDNS/pdns/pull/9031
https://github.com/PowerDNS/pdns/pull/9057

dnsdist

21.41 1.5.0-rc1

Released: 16th of April 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.41.1 Improvements

• Expose SuffixMatchNode::remove in Lua ¶ References: pull request 8956

• Remove a std::move() preventing Return-Value Optimization in lmdb-safe.cc ¶ References: pull request
8962

• Drop responses with the QR bit set to 0 ¶ References: pull request 8996

• Add an option to control the size of the TCP listen queue ¶ References: #8986, pull request 8994

21.41.2 Bug Fixes

• Keep accepting fragmented UDP datagrams on DNSCrypt binds ¶ References: pull request 8974

• Accept UDP datagrams larger than 1500 bytes for DNSCrypt ¶ References: #8974, pull request 8976

• On OpenBSD string_view is both in boost and std ¶ References: pull request 8955

21.42 1.5.0-alpha1

Released: 20th of March 2020

Please review the Upgrade Guide before upgrading from versions < 1.5.x.

21.42.1 New Features

• Implement LuaFFIRule, LuaFFIAction and LuaFFIResponseAction ¶ References: #7617, pull request 8505

• Add SetNegativeAndSOAAction() and its Lua binding ¶ References: #4747, pull request 8171

• Implement dynamic blocking on ratio of rcode/total responses ¶ References: pull request 8274

• Add bounded loads to the consistent hashing policy ¶ References: #7387, pull request 8567

• LogResponseAction (phonedph1) ¶ References: pull request 8654

• Add spoofRawAction() to craft answers from raw bytes ¶ References: pull request 8722

• Add support for Proxy Protocol between dnsdist and the recursor ¶ References: pull request 8874

• Implement bounded loads for the whashed and wrandom policies ¶ References: pull request 8909

21.42.2 Improvements

• Don’t accept sub-paths of configured DoH URLs ¶ References: #8573, pull request 8760

• Implement Cache-Control headers in DoH ¶ References: #8586, pull request 8762

• Change the default DoH path from / to /dns-query ¶ References: #8819, pull request 8905

• Add support for the processing of X-Forwarded-For headers ¶ References: #8661, pull request 8945

• Switch the default DoT provider from GnuTLS to OpenSSL ¶ References: pull request 8380

• Document that the ‘keyLogFile’ option requires OpenSSL >= 1.1.1 ¶ References: #8806, pull request 8899

276 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/8956
https://github.com/PowerDNS/pdns/pull/8962
https://github.com/PowerDNS/pdns/pull/8962
https://github.com/PowerDNS/pdns/pull/8996
https://github.com/PowerDNS/pdns/issues/8986
https://github.com/PowerDNS/pdns/pull/8994
https://github.com/PowerDNS/pdns/pull/8974
https://github.com/PowerDNS/pdns/issues/8974
https://github.com/PowerDNS/pdns/pull/8976
https://github.com/PowerDNS/pdns/pull/8955
https://github.com/PowerDNS/pdns/issues/7617
https://github.com/PowerDNS/pdns/pull/8505
https://github.com/PowerDNS/pdns/issues/4747
https://github.com/PowerDNS/pdns/pull/8171
https://github.com/PowerDNS/pdns/pull/8274
https://github.com/PowerDNS/pdns/issues/7387
https://github.com/PowerDNS/pdns/pull/8567
https://github.com/PowerDNS/pdns/pull/8654
https://github.com/PowerDNS/pdns/pull/8722
https://github.com/PowerDNS/pdns/pull/8874
https://github.com/PowerDNS/pdns/pull/8909
https://github.com/PowerDNS/pdns/issues/8573
https://github.com/PowerDNS/pdns/pull/8760
https://github.com/PowerDNS/pdns/issues/8586
https://github.com/PowerDNS/pdns/pull/8762
https://github.com/PowerDNS/pdns/issues/8819
https://github.com/PowerDNS/pdns/pull/8905
https://github.com/PowerDNS/pdns/issues/8661
https://github.com/PowerDNS/pdns/pull/8945
https://github.com/PowerDNS/pdns/pull/8380
https://github.com/PowerDNS/pdns/issues/8806
https://github.com/PowerDNS/pdns/pull/8899

dnsdist

• Add the source and destination ports to the protobuf msg ¶ References: pull request 8702

• Better handling of reconnections in Remote Logger ¶ References: pull request 8887

• Rework NetmaskTree for better CPU and memory efficiency. (Stephan Bosch) ¶ References: pull request
8355

• Implement parallel health checks ¶ References: pull request 8491

• Use move semantics when updating the content of the StateHolder ¶ References: pull request 8538

• Keep a masked network in the Netmask class ¶ References: pull request 8812

• Make FrameStream IO parameters configurable ¶ References: pull request 8937

• Add backend status to prometheus metrics ¶ References: #8746, pull request 8772

• Add ‘IO wait’ and ‘steal’ metrics on Linux ¶ References: pull request 8783

• Don’t start as root within a systemd environment ¶ References: pull request 7820

• Separate the check-config and client modes ¶ References: pull request 8456

• Add the number of received bytes to StatNode entries ¶ References: pull request 8529

• Support setting the value of AA, AD and RA when self-generating answers ¶ References: #8534, pull
request 8556

• pthread_rwlock_init() should be matched by pthread_rwlock_destroy() ¶ References: pull request 8580

• Replace include guard ifdef/define with pragma once (Chris Hofstaedtler) ¶ References: pull request 8631

• Allow retrieving and deleting a backend via its UUID ¶ References: pull request 8657

• Load an openssl configuration file, if any, during startup ¶ References: pull request 8733

• Add get*BindCount() functions ¶ References: pull request 8848

• Add sessionTimeout setting for TLS session lifetime (Matti Hiljanen) ¶ References: pull request 8882

• Detect {Libre,Open}SSL functions availability during configure ¶ References: #8739, pull request 8900

• Warn on startup about low weight values with chashed ¶ References: #8669, pull request 8950

21.42.3 Bug Fixes

• Set the DoH ticket rotation delay before loading tickets ¶ References: pull request 8949

• Display the correct DoT provider ¶ References: pull request 8662

• Use ref counting for the DoT TLS context ¶ References: pull request 8761

• Add ‘queue full’ metrics for our remote logger, log at debug only ¶ References: #8629, pull request 8883

• Fix ECS addition when the OPT record is not the last one ¶ References: #8098, pull request 8115

• Wait longer for the TLS ticket to arrive in our tests ¶ References: pull request 8591

• Add missing exception message in KVS error ¶ References: pull request 8604

• Add getTag()/setTag() Lua bindings for a DNSResponse ¶ References: pull request 8782

• Fix key logging for DNS over TLS ¶ References: #8442, pull request 8787

• Fix a typo in the help/completion for getDNSCryptBindCount ¶ References: pull request 8855

• Implement rmACL() (swoga) ¶ References: pull request 8856

• Remove unused lambda capture reported by clang++ ¶ References: pull request 8879

21.42. 1.5.0-alpha1 277

https://github.com/PowerDNS/pdns/pull/8702
https://github.com/PowerDNS/pdns/pull/8887
https://github.com/PowerDNS/pdns/pull/8355
https://github.com/PowerDNS/pdns/pull/8355
https://github.com/PowerDNS/pdns/pull/8491
https://github.com/PowerDNS/pdns/pull/8538
https://github.com/PowerDNS/pdns/pull/8812
https://github.com/PowerDNS/pdns/pull/8937
https://github.com/PowerDNS/pdns/issues/8746
https://github.com/PowerDNS/pdns/pull/8772
https://github.com/PowerDNS/pdns/pull/8783
https://github.com/PowerDNS/pdns/pull/7820
https://github.com/PowerDNS/pdns/pull/8456
https://github.com/PowerDNS/pdns/pull/8529
https://github.com/PowerDNS/pdns/issues/8534
https://github.com/PowerDNS/pdns/pull/8556
https://github.com/PowerDNS/pdns/pull/8556
https://github.com/PowerDNS/pdns/pull/8580
https://github.com/PowerDNS/pdns/pull/8631
https://github.com/PowerDNS/pdns/pull/8657
https://github.com/PowerDNS/pdns/pull/8733
https://github.com/PowerDNS/pdns/pull/8848
https://github.com/PowerDNS/pdns/pull/8882
https://github.com/PowerDNS/pdns/issues/8739
https://github.com/PowerDNS/pdns/pull/8900
https://github.com/PowerDNS/pdns/issues/8669
https://github.com/PowerDNS/pdns/pull/8950
https://github.com/PowerDNS/pdns/pull/8949
https://github.com/PowerDNS/pdns/pull/8662
https://github.com/PowerDNS/pdns/pull/8761
https://github.com/PowerDNS/pdns/issues/8629
https://github.com/PowerDNS/pdns/pull/8883
https://github.com/PowerDNS/pdns/issues/8098
https://github.com/PowerDNS/pdns/pull/8115
https://github.com/PowerDNS/pdns/pull/8591
https://github.com/PowerDNS/pdns/pull/8604
https://github.com/PowerDNS/pdns/pull/8782
https://github.com/PowerDNS/pdns/issues/8442
https://github.com/PowerDNS/pdns/pull/8787
https://github.com/PowerDNS/pdns/pull/8855
https://github.com/PowerDNS/pdns/pull/8856
https://github.com/PowerDNS/pdns/pull/8879

dnsdist

21.43 1.4.0

Released: 20th of November 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.43.1 Improvements

• Fix the default value of setMaxUDPOutstanding in the console’s help (phonedph1) ¶ References: pull
request 8531

• Add bindings for the noerrors and drops members of StatNode ¶ References: pull request 8522

• Fix -Wshadow warnings (Aki Tuomi) ¶ References: pull request 8440

• Fix typo: settting to setting (Chris Hofstaedtler) ¶ References: pull request 8509

21.43.2 Bug Fixes

• Lowercase the name blocked by a SMT dynamic block ¶ References: pull request 8524

21.43.3 misc

• Prefer the cipher suite from the server by default (DoH, DoT) ¶ References: pull request 8526

21.44 1.4.0-rc5

Released: 30th of October 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.44.1 Improvements

• Rename the ‘address’ label to ‘frontend’ for DoH metrics ¶ References: pull request 8465

21.44.2 Bug Fixes

• Increment the DOHUnit ref count when it’s set in the IDState ¶ References: pull request 8471

21.45 1.4.0-rc4

Released: 25th of October 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.45.1 New Features

• Add support dumping TLS keys via keyLogFile ¶ References: pull request 8442

278 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/8531
https://github.com/PowerDNS/pdns/pull/8531
https://github.com/PowerDNS/pdns/pull/8522
https://github.com/PowerDNS/pdns/pull/8440
https://github.com/PowerDNS/pdns/pull/8509
https://github.com/PowerDNS/pdns/pull/8524
https://github.com/PowerDNS/pdns/pull/8526
https://github.com/PowerDNS/pdns/pull/8465
https://github.com/PowerDNS/pdns/pull/8471
https://github.com/PowerDNS/pdns/pull/8442

dnsdist

21.45.2 Improvements

• Implement reference counting for the DOHUnit object ¶ References: pull request 8416

• Lowercase custom DoH header names ¶ References: #8353, pull request 8365

• Add metrics about TLS handshake failures for DoH and DoT ¶ References: pull request 8447

• Merge the setup of TLS contexts in DoH and DoT ¶ References: pull request 8383

• Add metrics about unknown/inactive TLS ticket keys ¶ References: pull request 8406

• Add metrics about TLS versions with DNS over TLS ¶ References: pull request 8387

• Add a ‘preferServerCiphers’ option for DoH and DoT ¶ References: pull request 8382

• Count the number of concurrent connections for DoH as well ¶ References: pull request 8395

• Refactor DoH prometheus metrics again ¶ References: pull request 8361

• Add more options to LogAction (non-verbose mode, timestamps) ¶ References: #8390, pull request 8411

• Fix formatting in showTCPStats() ¶ References: pull request 8415

• Use SO_BINDTODEVICE when available for newServer’s source interface ¶ References: pull request
8372

• Check the address supplied to ‘webserver’ in check-config ¶ References: #8362, pull request 8364

21.45.3 Bug Fixes

• Clear the DoH session ticket encryption key in the ctor ¶ References: pull request 8388

• Add missing prometheus descriptions for cache-related metrics ¶ References: pull request 8409

• Add a prometheus ‘thread’ label to distinguish identical frontends ¶ References: pull request 8381

• Fix a typo in the prometheus description of ‘senderrors’ ¶ References: pull request 8378

• More prometheus fixes ¶ References: pull request 8368

• Fix the caching of large entries ¶ References: pull request 8408

• Work around cmsg_space somehow not being a constexpr on macOS ¶ References: #8412, pull request
8413

• Fix the creation order of rules when inserted via setRules() ¶ References: pull request 8359

21.46 1.4.0-rc3

Released: 30th of September 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.46.1 Improvements

• Allow accepting DoH queries over HTTP instead of HTTPS ¶ References: pull request 8267

• Implement TLS session ticket keys management for DoH ¶ References: pull request 8349

• Display the DoH and DoT binds in the web view ¶ References: pull request 8264

• Clean up our interactions with errno ¶ References: #7845, pull request 8083

• Remove the ‘blockfilter’ stat from the web view ¶ References: #5514, pull request 8265

• Fix some spelling mistakes noticed by lintian (Chris Hofstaedtler) ¶ References: pull request 8268

21.46. 1.4.0-rc3 279

https://github.com/PowerDNS/pdns/pull/8416
https://github.com/PowerDNS/pdns/issues/8353
https://github.com/PowerDNS/pdns/pull/8365
https://github.com/PowerDNS/pdns/pull/8447
https://github.com/PowerDNS/pdns/pull/8383
https://github.com/PowerDNS/pdns/pull/8406
https://github.com/PowerDNS/pdns/pull/8387
https://github.com/PowerDNS/pdns/pull/8382
https://github.com/PowerDNS/pdns/pull/8395
https://github.com/PowerDNS/pdns/pull/8361
https://github.com/PowerDNS/pdns/issues/8390
https://github.com/PowerDNS/pdns/pull/8411
https://github.com/PowerDNS/pdns/pull/8415
https://github.com/PowerDNS/pdns/pull/8372
https://github.com/PowerDNS/pdns/pull/8372
https://github.com/PowerDNS/pdns/issues/8362
https://github.com/PowerDNS/pdns/pull/8364
https://github.com/PowerDNS/pdns/pull/8388
https://github.com/PowerDNS/pdns/pull/8409
https://github.com/PowerDNS/pdns/pull/8381
https://github.com/PowerDNS/pdns/pull/8378
https://github.com/PowerDNS/pdns/pull/8368
https://github.com/PowerDNS/pdns/pull/8408
https://github.com/PowerDNS/pdns/issues/8412
https://github.com/PowerDNS/pdns/pull/8413
https://github.com/PowerDNS/pdns/pull/8413
https://github.com/PowerDNS/pdns/pull/8359
https://github.com/PowerDNS/pdns/pull/8267
https://github.com/PowerDNS/pdns/pull/8349
https://github.com/PowerDNS/pdns/pull/8264
https://github.com/PowerDNS/pdns/issues/7845
https://github.com/PowerDNS/pdns/pull/8083
https://github.com/PowerDNS/pdns/issues/5514
https://github.com/PowerDNS/pdns/pull/8265
https://github.com/PowerDNS/pdns/pull/8268

dnsdist

• dnsdistconf.lua use non-deprecated versions for 1.4.0 (phonedph1) ¶ References: pull request 8285

• Better use of labels in our DoH prometheus export ¶ References: pull request 8318

21.46.2 Bug Fixes

• Fix the newCDBKVStore console completion when LMDB is not enabled (phonedph1) ¶ References: pull
request 8281

• Allow configure CDB_CFLAGS to work (phonedph1) ¶ References: pull request 8283

• Fix the warning message on an invalid secpoll answer ¶ References: pull request 8303

• Don’t connect to remote logger in client/command mode ¶ References: #8300, pull request 8304

21.47 1.4.0-rc2

Released: 2nd of September 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.47.1 New Features

• Add support for early DoH HTTP responses ¶ References: pull request 8206

• Add a KeyValueStoreLookup action based on CDB or LMDB ¶ References: pull request 8139

21.47.2 Improvements

• Add minTLSVersion for DoH and DoT ¶ References: #8202, pull request 8207

• Split dnsdist-lua-bindings.cc to reduce memory consumption during compilation ¶ References: pull request
8250

• Add a Lua binding for dynBlockRulesGroup:setQuiet(quiet) ¶ References: pull request 8252

21.47.3 misc

• Update h2o to 2.2.6, fixing CVE-2019-9512, CVE-2019-9514 and CVE-2019-9515 for repo.powerdns.com
packages ¶ References: pull request 8200

21.48 1.4.0-rc1

Released: 12th of August 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.48.1 New Features

• Add support for custom DoH headers (Melissa Voegeli) ¶ References: #7900, #7957, pull request 8148

• Add lua bindings, rules and action for DoH ¶ References: #8133, pull request 8153

• Add OCSP stapling (from files) for DoT and DoH ¶ References: #7812, pull request 8141

• Implement ContinueAction() ¶ References: pull request 8117

280 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/8285
https://github.com/PowerDNS/pdns/pull/8318
https://github.com/PowerDNS/pdns/pull/8281
https://github.com/PowerDNS/pdns/pull/8281
https://github.com/PowerDNS/pdns/pull/8283
https://github.com/PowerDNS/pdns/pull/8303
https://github.com/PowerDNS/pdns/issues/8300
https://github.com/PowerDNS/pdns/pull/8304
https://github.com/PowerDNS/pdns/pull/8206
https://github.com/PowerDNS/pdns/pull/8139
https://github.com/PowerDNS/pdns/issues/8202
https://github.com/PowerDNS/pdns/pull/8207
https://github.com/PowerDNS/pdns/pull/8250
https://github.com/PowerDNS/pdns/pull/8250
https://github.com/PowerDNS/pdns/pull/8252
https://github.com/PowerDNS/pdns/pull/8200
https://github.com/PowerDNS/pdns/issues/7900
https://github.com/PowerDNS/pdns/issues/7957
https://github.com/PowerDNS/pdns/pull/8148
https://github.com/PowerDNS/pdns/issues/8133
https://github.com/PowerDNS/pdns/pull/8153
https://github.com/PowerDNS/pdns/issues/7812
https://github.com/PowerDNS/pdns/pull/8141
https://github.com/PowerDNS/pdns/pull/8117

dnsdist

21.48.2 Improvements

• Send better HTTP status codes, handle ACL drops earlier ¶ References: pull request 7917

• Add more stats about DoH HTTP responses ¶ References: #7898, pull request 7933

• Improve error messages for DoT issues ¶ References: pull request 7978

• Accept more than one certificate in addDNSCryptBind() ¶ References: #8020, pull request 8042

• Disallow TCP disablement ¶ References: pull request 7860

• Update boost.m4 to the latest version ¶ References: pull request 7862

• Print stats from expungeByName (Matti Hiljanen) ¶ References: pull request 7909

• Squelch unused function warning ¶ References: #7950, pull request 7952

• SuffixMatchNode:add(): accept more types ¶ References: pull request 7985

• Explicitly align the buffer used for cmsgs ¶ References: #7981, pull request 7990

• Add quiet parameter to NetmaskGroupRule ¶ References: pull request 7992

• Clear cmsg_space(sizeof(data)) in cmsghdr to appease Valgrind ¶ References: #7981, pull request 7996

• Add static assertions for the size of the src address control buffer ¶ References: pull request 8007

• Don’t create temporary strings to escape DNSName labels ¶ References: pull request 8013

• Display TCP/DoT queries and responses in verbose mode, opcode in grepq ¶ References: pull request 8024

• Be a bit more explicit about what failed in testCrypto() ¶ References: pull request 8025

• Update URLs to use HTTPS scheme (Chris Hofstaedtler) ¶ References: pull request 8110

• Double-check we only increment the outstanding counter once ¶ References: pull request 8113

• ext/ipcrypt: ship license in tarballs (Chris Hofstaedtler) ¶ References: #8108, pull request 8135

• Use a counter to mark IDState usage instead of the FD ¶ References: pull request 8154

• Increase the default value of setMaxUDPOutstanding to 65535 ¶ References: pull request 8175

21.48.3 Bug Fixes

• Properly override the HTTP Server header for DoH ¶ References: #7894, pull request 7911

• Proper HTTP response for timeouts over DoH ¶ References: #7917, pull request 7927

• Prevent a dangling DOHUnit pointer when send() failed ¶ References: pull request 8112

• Exit when requested DoT/DoH support is not compiled in ¶ References: pull request 7915

• Skip non-dnscrypt binds in showDNSCryptBinds() ¶ References: #8014, pull request 8015

• SuffixMatchTree: fix root removal, partial match of non-leaf nodes ¶ References: pull request 7886

• Deduplicate frontends entries with carbon and prometheus ¶ References: #7933, pull request 7934

• Update boost.m4 ¶ References: #6942, #8084, pull request 7951

• Fix short IOs over TCP ¶ References: #7971, pull request 7974

• Fix handling of backend connection failing over TCP ¶ References: pull request 7979

• Insert the response into the ringbuffer right after sending it ¶ References: pull request 8003

• Handle ENOTCONN on read() over TCP ¶ References: #8021, pull request 8030

• Make sure we always compile with BOOST_CB_ENABLE_DEBUG set to 0 ¶ References: pull request
8067

• Catch exceptions thrown when handling a TCP response ¶ References: pull request 8078

21.48. 1.4.0-rc1 281

https://github.com/PowerDNS/pdns/pull/7917
https://github.com/PowerDNS/pdns/issues/7898
https://github.com/PowerDNS/pdns/pull/7933
https://github.com/PowerDNS/pdns/pull/7978
https://github.com/PowerDNS/pdns/issues/8020
https://github.com/PowerDNS/pdns/pull/8042
https://github.com/PowerDNS/pdns/pull/7860
https://github.com/PowerDNS/pdns/pull/7862
https://github.com/PowerDNS/pdns/pull/7909
https://github.com/PowerDNS/pdns/issues/7950
https://github.com/PowerDNS/pdns/pull/7952
https://github.com/PowerDNS/pdns/pull/7985
https://github.com/PowerDNS/pdns/issues/7981
https://github.com/PowerDNS/pdns/pull/7990
https://github.com/PowerDNS/pdns/pull/7992
https://github.com/PowerDNS/pdns/issues/7981
https://github.com/PowerDNS/pdns/pull/7996
https://github.com/PowerDNS/pdns/pull/8007
https://github.com/PowerDNS/pdns/pull/8013
https://github.com/PowerDNS/pdns/pull/8024
https://github.com/PowerDNS/pdns/pull/8025
https://github.com/PowerDNS/pdns/pull/8110
https://github.com/PowerDNS/pdns/pull/8113
https://github.com/PowerDNS/pdns/issues/8108
https://github.com/PowerDNS/pdns/pull/8135
https://github.com/PowerDNS/pdns/pull/8154
https://github.com/PowerDNS/pdns/pull/8175
https://github.com/PowerDNS/pdns/issues/7894
https://github.com/PowerDNS/pdns/pull/7911
https://github.com/PowerDNS/pdns/issues/7917
https://github.com/PowerDNS/pdns/pull/7927
https://github.com/PowerDNS/pdns/pull/8112
https://github.com/PowerDNS/pdns/pull/7915
https://github.com/PowerDNS/pdns/issues/8014
https://github.com/PowerDNS/pdns/pull/8015
https://github.com/PowerDNS/pdns/pull/7886
https://github.com/PowerDNS/pdns/issues/7933
https://github.com/PowerDNS/pdns/pull/7934
https://github.com/PowerDNS/pdns/issues/6942
https://github.com/PowerDNS/pdns/issues/8084
https://github.com/PowerDNS/pdns/pull/7951
https://github.com/PowerDNS/pdns/issues/7971
https://github.com/PowerDNS/pdns/pull/7974
https://github.com/PowerDNS/pdns/pull/7979
https://github.com/PowerDNS/pdns/pull/8003
https://github.com/PowerDNS/pdns/issues/8021
https://github.com/PowerDNS/pdns/pull/8030
https://github.com/PowerDNS/pdns/pull/8067
https://github.com/PowerDNS/pdns/pull/8067
https://github.com/PowerDNS/pdns/pull/8078

dnsdist

• Fix unlimited retries when TCP Fast Open is enabled ¶ References: pull request 8079

• M4/systemd.m4: fail when systemctl is not available ¶ References: pull request 8081

• Fix a typo in the Server’s latency description for Prometheus (phonedph1) ¶ References: pull request 8105

• Console: flush cout after printing g_outputbuffer (Doug Freed) ¶ References: #8130, pull request 8131

• Fix signedness issue in isEDNSOptionInOpt() ¶ References: pull request 8158

21.49 1.4.0-beta1

Released: 6th of June 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.49.1 New Features

• Implement SNIRule for DoT and DoH ¶ References: #7210, pull request 7825

21.49.2 Improvements

• Support Prometheus latency histograms (Marlin Cremers) ¶ References: #6088, pull request 7853

21.49.3 Bug Fixes

• DoH: Don’t let ‘self’ dangling while parsing the request’s qname, this could lead to a crash ¶ References:
#7810, pull request 7814

• Fix minor issues reported by Coverity ¶ References: pull request 7823

• Remove second, incomplete copy of lua EDNSOptionCode table ¶ References: pull request 7833

21.50 1.4.0-alpha2

Released: 26th of April 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.50.1 New Features

• Add DNS over HTTPS support based on libh2o ¶ References: #6911, #7526, pull request 7726

21.50.2 Improvements

• Ignore Path MTU discovery on UDP server socket ¶ References: pull request 7410

• Alternative solution to the unaligned accesses. ¶ References: pull request 7708

21.50.3 Bug Fixes

• Exit when setting ciphers fails (GnuTLS) ¶ References: pull request 7718

282 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/8079
https://github.com/PowerDNS/pdns/pull/8081
https://github.com/PowerDNS/pdns/pull/8105
https://github.com/PowerDNS/pdns/issues/8130
https://github.com/PowerDNS/pdns/pull/8131
https://github.com/PowerDNS/pdns/pull/8158
https://github.com/PowerDNS/pdns/issues/7210
https://github.com/PowerDNS/pdns/pull/7825
https://github.com/PowerDNS/pdns/issues/6088
https://github.com/PowerDNS/pdns/pull/7853
https://github.com/PowerDNS/pdns/issues/7810
https://github.com/PowerDNS/pdns/pull/7814
https://github.com/PowerDNS/pdns/pull/7823
https://github.com/PowerDNS/pdns/pull/7833
https://github.com/PowerDNS/pdns/issues/6911
https://github.com/PowerDNS/pdns/issues/7526
https://github.com/PowerDNS/pdns/pull/7726
https://github.com/PowerDNS/pdns/pull/7410
https://github.com/PowerDNS/pdns/pull/7708
https://github.com/PowerDNS/pdns/pull/7718

dnsdist

21.51 1.4.0-alpha1

Released: 12th of April 2019

Please review the Upgrade Guide before upgrading from versions < 1.4.x.

21.51.1 New Features

• Make recursor & dnsdist communicate (ECS) ‘variable’ status ¶ References: pull request 7209

• Add namespace and instance variable to carbon key (Gibheer) ¶ References: #2362, #6941, pull request
6959

• Allow NoRecurse for use in dynamic blocks or Lua rules (phonedph1) ¶ References: pull request 7087

• Expose secpoll status ¶ References: #7194, pull request 7197

• Add an optional ‘checkTimeout’ parameter to ‘newServer()’ ¶ References: #7236, pull request 7323

• Add a ‘rise’ parameter to ‘newServer()’ ¶ References: #7237, pull request 7322

• Add a ‘keepStaleData’ option to the packet cache ¶ References: #7239, pull request 7310

• Expose trailing data (Richard Gibson) ¶ References: #6846, #6897, pull request 6967

• Add option to set interval between health checks (1848) ¶ References: pull request 7142

• Add EDNS unknown version handling (Dmitry Alenichev) ¶ References: pull request 7406

• DNSNameSet and QNameSetRule (Andrey) ¶ References: pull request 7537

• Add support for encrypting ip addresses #gdpr ¶ References: #6242, pull request 7481

• Add ‘setSyslogFacility()’ ¶ References: #5653, pull request 7677

• Add ‘reloadAllCertificates()’ ¶ References: pull request 7676

21.51.2 Improvements

• Fix warnings, mostly unused parameters, reported by -wextra ¶ References: pull request 7168

• Add optional uuid column to showServers() ¶ References: pull request 7191

• Configure –enable-pdns-option –with-third-party-module (Josh Soref) ¶ References: pull request 7026

• Drop remaining capabilities after startup ¶ References: pull request 7138

• More sandboxing using systemd’s features ¶ References: pull request 6634

• Reduce systemcall usage in Protobuf logging ¶ References: pull request 7428

• Resync YaHTTP code to cmouse/yahttp@11be77a1fc4032 (Chris Hofstaedtler) ¶ References: pull request
7433

• Pass empty response (Dmitry Alenichev) ¶ References: pull request 7431

• Change the way getRealMemusage() works on linux (using statm) ¶ References: pull request 7502

• Prevent 0-ttl cache hits ¶ References: #7534, pull request 7585

• Add addDynBlockSMT() support to dynBlockRulesGroup ¶ References: #7139, pull request 7343

• Add frontend response statistics (Matti Hiljanen) ¶ References: pull request 7578

• Remove addLuaAction and addLuaResponseAction ¶ References: pull request 7670

• Refactoring of the TCP stack ¶ References: #4814, #7526, pull request 7559

• Prevent a conflict with BADSIG being clobbered ¶ References: #7556, pull request 7692

21.51. 1.4.0-alpha1 283

https://github.com/PowerDNS/pdns/pull/7209
https://github.com/PowerDNS/pdns/issues/2362
https://github.com/PowerDNS/pdns/issues/6941
https://github.com/PowerDNS/pdns/pull/6959
https://github.com/PowerDNS/pdns/pull/6959
https://github.com/PowerDNS/pdns/pull/7087
https://github.com/PowerDNS/pdns/issues/7194
https://github.com/PowerDNS/pdns/pull/7197
https://github.com/PowerDNS/pdns/issues/7236
https://github.com/PowerDNS/pdns/pull/7323
https://github.com/PowerDNS/pdns/issues/7237
https://github.com/PowerDNS/pdns/pull/7322
https://github.com/PowerDNS/pdns/issues/7239
https://github.com/PowerDNS/pdns/pull/7310
https://github.com/PowerDNS/pdns/issues/6846
https://github.com/PowerDNS/pdns/issues/6897
https://github.com/PowerDNS/pdns/pull/6967
https://github.com/PowerDNS/pdns/pull/7142
https://github.com/PowerDNS/pdns/pull/7406
https://github.com/PowerDNS/pdns/pull/7537
https://github.com/PowerDNS/pdns/issues/6242
https://github.com/PowerDNS/pdns/pull/7481
https://github.com/PowerDNS/pdns/issues/5653
https://github.com/PowerDNS/pdns/pull/7677
https://github.com/PowerDNS/pdns/pull/7676
https://github.com/PowerDNS/pdns/pull/7168
https://github.com/PowerDNS/pdns/pull/7191
https://github.com/PowerDNS/pdns/pull/7026
https://github.com/PowerDNS/pdns/pull/7138
https://github.com/PowerDNS/pdns/pull/6634
https://github.com/PowerDNS/pdns/pull/7428
mailto:cmouse/yahttp@11be77a1fc4032
https://github.com/PowerDNS/pdns/pull/7433
https://github.com/PowerDNS/pdns/pull/7433
https://github.com/PowerDNS/pdns/pull/7431
https://github.com/PowerDNS/pdns/pull/7502
https://github.com/PowerDNS/pdns/issues/7534
https://github.com/PowerDNS/pdns/pull/7585
https://github.com/PowerDNS/pdns/issues/7139
https://github.com/PowerDNS/pdns/pull/7343
https://github.com/PowerDNS/pdns/pull/7578
https://github.com/PowerDNS/pdns/pull/7670
https://github.com/PowerDNS/pdns/issues/4814
https://github.com/PowerDNS/pdns/issues/7526
https://github.com/PowerDNS/pdns/pull/7559
https://github.com/PowerDNS/pdns/issues/7556
https://github.com/PowerDNS/pdns/pull/7692

dnsdist

• Switch to the new ‘newPacketCache()’ syntax for 1.4.0 ¶ References: pull request 7689

• Move constants to proper namespace ¶ References: pull request 7678

• Unify the management of DNS/DNSCrypt/DoT frontends ¶ References: pull request 7694

• Fix compiler warning about returning garbage (Adam Majer)

¶ References: pull request 7167

21.51.3 Bug Fixes

• Protect GnuTLS tickets key rotation with a read-write lock ¶ References: pull request 7256

• Check that SO_ATTACH_BPF is defined before enabling eBPF ¶ References: pull request 7267

• Fix off-by-one in mvRule counting ¶ References: pull request 7426

• Don’t convert nsec to usec if we need nsec ¶ References: pull request 7520

• Fix setRules() ¶ References: pull request 7594

• Handle EAGAIN in the GnuTLS DNS over TLS provider ¶ References: pull request 7560

• Gracefully handle a null latency in the webserver’s js ¶ References: #7461, pull request 7586

• EDNSOptionView improvements ¶ References: pull request 7652

• Honor libcrypto include path ¶ References: #7481, pull request 7674

21.52 1.3.3

Released: 8th of November 2018

Please review the Upgrade Guide before upgrading from versions < 1.3.x.

21.52.1 New Features

• Add consistent hash builtin policy ¶ References: #6932, pull request 6737, pull request 6939

• Add EDNSOptionRule ¶ References: pull request 6803

• Add DSTPortRule (phonedph1) ¶ References: pull request 6813

• Make getOutstanding usable from both lua and console (phonedph1) ¶ References: pull request 6826

• Added :excludeRange and :includeRange methods to DynBPFFilter class (Reinier Schoof) ¶ References:
pull request 6856

• Add Prometheus stats support (Pavel Odintsov, Kai S) ¶ References: #4947, #6002, pull request 3935, pull
request 6343, pull request 6901, pull request 7007, pull request 7089

• Name threads in the programs ¶ References: #6974, pull request 6997

• Support the NXDomain action with dynamic blocks ¶ References: #6908, pull request 7075

• Add security polling ¶ References: pull request 7115

• Add a PoolAvailableRule to easily add backup pools (Robin Geuze) ¶ References: pull request 7140

284 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/7689
https://github.com/PowerDNS/pdns/pull/7678
https://github.com/PowerDNS/pdns/pull/7694
https://github.com/PowerDNS/pdns/pull/7167
https://github.com/PowerDNS/pdns/pull/7256
https://github.com/PowerDNS/pdns/pull/7267
https://github.com/PowerDNS/pdns/pull/7426
https://github.com/PowerDNS/pdns/pull/7520
https://github.com/PowerDNS/pdns/pull/7594
https://github.com/PowerDNS/pdns/pull/7560
https://github.com/PowerDNS/pdns/issues/7461
https://github.com/PowerDNS/pdns/pull/7586
https://github.com/PowerDNS/pdns/pull/7652
https://github.com/PowerDNS/pdns/issues/7481
https://github.com/PowerDNS/pdns/pull/7674
https://github.com/PowerDNS/pdns/issues/6932
https://github.com/PowerDNS/pdns/pull/6737
https://github.com/PowerDNS/pdns/pull/6939
https://github.com/PowerDNS/pdns/pull/6803
https://github.com/PowerDNS/pdns/pull/6813
https://github.com/PowerDNS/pdns/pull/6826
https://github.com/PowerDNS/pdns/pull/6856
https://github.com/PowerDNS/pdns/issues/4947
https://github.com/PowerDNS/pdns/issues/6002
https://github.com/PowerDNS/pdns/pull/3935
https://github.com/PowerDNS/pdns/pull/6343
https://github.com/PowerDNS/pdns/pull/6343
https://github.com/PowerDNS/pdns/pull/6901
https://github.com/PowerDNS/pdns/pull/7007
https://github.com/PowerDNS/pdns/pull/7089
https://github.com/PowerDNS/pdns/issues/6974
https://github.com/PowerDNS/pdns/pull/6997
https://github.com/PowerDNS/pdns/issues/6908
https://github.com/PowerDNS/pdns/pull/7075
https://github.com/PowerDNS/pdns/pull/7115
https://github.com/PowerDNS/pdns/pull/7140

dnsdist

21.52.2 Improvements

• Get rid of some allocs/copies in DNS parsing ¶ References: pull request 6831

• Set a correct EDNS OPT RR for self-generated answers ¶ References: #4857, #6348, pull request 6847

• Fix a sign-comparison warning in isEDNSOptionInOPT() ¶ References: pull request 6877

• Add warning rates to DynBlockRulesGroup rules ¶ References: #6907, pull request 6986

• Add support for exporting a server id in protobuf ¶ References: #6990, #7004, pull request 7015

• dnsdist did not set TCP_NODELAY, causing needless latency ¶ References: pull request 7030

• Add a setting to control the number of stored sessions ¶ References: pull request 7062

• Wrap GnuTLS and OpenSSL pointers in smart pointers ¶ References: #7060, pull request 7064

• Add a ‘creationOrder’ field to rules ¶ References: #6909, pull request 7078

• Fix return-type detection with boost 1.69’s tribool ¶ References: #7091, pull request 7092

• Fix format string issue on 32bits ARM ¶ References: #7096, pull request 7104

• Wrap TCP connection objects in smart pointers ¶ References: pull request 7108

• Add the setConsoleOutputMaxMsgSize function ¶ References: #7084, pull request 7109

• Add the ability to update webserver credentials ¶ References: #7112, pull request 7117

21.52.3 Bug Fixes

• Display dynblocks’ default action, None, as the global one ¶ References: pull request 6835

• Fix compilation when SO_REUSEPORT is not defined ¶ References: pull request 6956

• Release memory on DNS over TLS handshake failure ¶ References: pull request 7060

• Handle trailing data correctly when adding OPT or ECS info ¶ References: #6896, pull request 7165

21.53 1.3.2

Released: 10th of July 2018

Please review the Upgrade Guide before upgrading from versions < 1.3.x.

21.53.1 Bug Fixes

• Add missing include for PRId64, fix build on CentOS 6 / SLES 12 ¶ References: pull request 6785

21.54 1.3.1

Released: 10th of July 2018

Please review the Upgrade Guide before upgrading from versions < 1.3.x.

21.53. 1.3.2 285

https://github.com/PowerDNS/pdns/pull/6831
https://github.com/PowerDNS/pdns/issues/4857
https://github.com/PowerDNS/pdns/issues/6348
https://github.com/PowerDNS/pdns/pull/6847
https://github.com/PowerDNS/pdns/pull/6877
https://github.com/PowerDNS/pdns/issues/6907
https://github.com/PowerDNS/pdns/pull/6986
https://github.com/PowerDNS/pdns/issues/6990
https://github.com/PowerDNS/pdns/issues/7004
https://github.com/PowerDNS/pdns/pull/7015
https://github.com/PowerDNS/pdns/pull/7030
https://github.com/PowerDNS/pdns/pull/7062
https://github.com/PowerDNS/pdns/issues/7060
https://github.com/PowerDNS/pdns/pull/7064
https://github.com/PowerDNS/pdns/issues/6909
https://github.com/PowerDNS/pdns/pull/7078
https://github.com/PowerDNS/pdns/issues/7091
https://github.com/PowerDNS/pdns/pull/7092
https://github.com/PowerDNS/pdns/issues/7096
https://github.com/PowerDNS/pdns/pull/7104
https://github.com/PowerDNS/pdns/pull/7108
https://github.com/PowerDNS/pdns/issues/7084
https://github.com/PowerDNS/pdns/pull/7109
https://github.com/PowerDNS/pdns/issues/7112
https://github.com/PowerDNS/pdns/pull/7117
https://github.com/PowerDNS/pdns/pull/6835
https://github.com/PowerDNS/pdns/pull/6956
https://github.com/PowerDNS/pdns/pull/7060
https://github.com/PowerDNS/pdns/issues/6896
https://github.com/PowerDNS/pdns/pull/7165
https://github.com/PowerDNS/pdns/pull/6785

dnsdist

21.54.1 New Features

• Add support for more than one TLS certificate ¶ References: #6450, pull request 6524

• Add a negative ttl option to the packet cache ¶ References: #6579, pull request 6740

• Add the ability to dump a summary of the cache content ¶ References: pull request 6749

• Add netmask-based {ex,in}clusions to DynblockRulesGroup ¶ References: pull request 6760

• Add DNSAction.NoOp to debug dynamic blocks ¶ References: #6703, pull request 6776

• Add SetECSAction to set an arbitrary outgoing ecs value ¶ References: #6404, pull request 6734

• Add support for rotating certificates and keys ¶ References: pull request 6764

21.54.2 Improvements

• Remove thelog and thel and replace this with a global g_log ¶ References: #6357, pull request 6358

• Fix two small nits on the documentation ¶ References: pull request 6422

• Move the el6 dnsdist package to upstart ¶ References: #6394, pull request 6426

• CLI option improvements (Chris Hofstaedtler) ¶ References: #6433, pull request 6435

• Split pdns_enable_unit_tests (Chris Hofstaedtler) ¶ References: pull request 6436

• Re-do lua detection ¶ References: #6423, pull request 6445, pull request 6457, pull request 6470

• Docs: fix missing ref in the dnsdist docs ¶ References: pull request 6460

• Be more permissive in wrandom tests, log values on failure ¶ References: pull request 6502

• Tests: avoid failure on not-so-optimal distribution ¶ References: #6430, pull request 6523

• Add syntax to dns.proto to silence compilation warning. ¶ References: pull request 6577

• Fix warnings reported by gcc 8.1.0 ¶ References: pull request 6590

• Document setVerboseHealthchecks() ¶ References: #6483, pull request 6592

• Update dq.rst (phonedph1) ¶ References: pull request 6615

• Fix rpm scriptlets ¶ References: pull request 6641

• Don’t copy unitialized values of SuffixMatchTree ¶ References: pull request 6637

• Expose toString of various objects to Lua (Chris Hofstaedtler) ¶ References: pull request 6684

• Remove ‘expired’ states from MaxQPSIPRule ¶ References: pull request 6674

• Mark the remote member of DownstreamState as const ¶ References: #6664, pull request 6688

• Test the content of dynamic blocks using the API ¶ References: #6706, pull request 6710

• Default set “connection: close” header for web requests ¶ References: #6532, pull request 6711

• Update timedipsetrule.rst (phonedph1) ¶ References: pull request 6717

• Don’t access the TCP buffer vector past its size ¶ References: #6712, pull request 6716

• Show droprate in API output ¶ References: pull request 6563

• Refuse console connection without a proper key set ¶ References: #6683, #6709, pull request 6715

• Use LRU to clean the MaxQPSIPRule’s store ¶ References: pull request 6726

• Disable maybe uninitialized warnings with boost optional ¶ References: pull request 6769

• Luawrapper: report caught std::exception as lua_error ¶ References: #6541, pull request 6658

• Dnstap.rst: fix some editing errors (Chris Hofstaedtler) ¶ References: pull request 6602

286 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/6450
https://github.com/PowerDNS/pdns/pull/6524
https://github.com/PowerDNS/pdns/issues/6579
https://github.com/PowerDNS/pdns/pull/6740
https://github.com/PowerDNS/pdns/pull/6749
https://github.com/PowerDNS/pdns/pull/6760
https://github.com/PowerDNS/pdns/issues/6703
https://github.com/PowerDNS/pdns/pull/6776
https://github.com/PowerDNS/pdns/issues/6404
https://github.com/PowerDNS/pdns/pull/6734
https://github.com/PowerDNS/pdns/pull/6764
https://github.com/PowerDNS/pdns/issues/6357
https://github.com/PowerDNS/pdns/pull/6358
https://github.com/PowerDNS/pdns/pull/6422
https://github.com/PowerDNS/pdns/issues/6394
https://github.com/PowerDNS/pdns/pull/6426
https://github.com/PowerDNS/pdns/issues/6433
https://github.com/PowerDNS/pdns/pull/6435
https://github.com/PowerDNS/pdns/pull/6436
https://github.com/PowerDNS/pdns/issues/6423
https://github.com/PowerDNS/pdns/pull/6445
https://github.com/PowerDNS/pdns/pull/6457
https://github.com/PowerDNS/pdns/pull/6470
https://github.com/PowerDNS/pdns/pull/6460
https://github.com/PowerDNS/pdns/pull/6502
https://github.com/PowerDNS/pdns/issues/6430
https://github.com/PowerDNS/pdns/pull/6523
https://github.com/PowerDNS/pdns/pull/6577
https://github.com/PowerDNS/pdns/pull/6590
https://github.com/PowerDNS/pdns/issues/6483
https://github.com/PowerDNS/pdns/pull/6592
https://github.com/PowerDNS/pdns/pull/6615
https://github.com/PowerDNS/pdns/pull/6641
https://github.com/PowerDNS/pdns/pull/6637
https://github.com/PowerDNS/pdns/pull/6684
https://github.com/PowerDNS/pdns/pull/6674
https://github.com/PowerDNS/pdns/issues/6664
https://github.com/PowerDNS/pdns/pull/6688
https://github.com/PowerDNS/pdns/issues/6706
https://github.com/PowerDNS/pdns/pull/6710
https://github.com/PowerDNS/pdns/issues/6532
https://github.com/PowerDNS/pdns/pull/6711
https://github.com/PowerDNS/pdns/pull/6717
https://github.com/PowerDNS/pdns/issues/6712
https://github.com/PowerDNS/pdns/pull/6716
https://github.com/PowerDNS/pdns/pull/6563
https://github.com/PowerDNS/pdns/issues/6683
https://github.com/PowerDNS/pdns/issues/6709
https://github.com/PowerDNS/pdns/pull/6715
https://github.com/PowerDNS/pdns/pull/6726
https://github.com/PowerDNS/pdns/pull/6769
https://github.com/PowerDNS/pdns/issues/6541
https://github.com/PowerDNS/pdns/pull/6658
https://github.com/PowerDNS/pdns/pull/6602

dnsdist

• Allow known exception types to be converted to string ¶ References: #6535, pull request 6541

21.54.3 Bug Fixes

• Initialize the done variable in the rings’ unit tests ¶ References: pull request 6425

• Reorder headers to fix OpenBSD build ¶ References: pull request 6429

• Restrict value range for weight parameter, avoid sum overflows dropping queries (Dan McCombs) ¶ Refer-
ences: pull request 6448

• Fix reconnection handling ¶ References: pull request 6672

• Dynamic blocks were being created with the wrong duration (David Freedman) ¶ References: pull request
6706

• Limit qps and latency to two decimals in the web view ¶ References: #6442, pull request 6718

• Check the flags to detect collisions in the packet cache ¶ References: pull request 6747

• Fix iterating over the results of exceed*() functions ¶ References: pull request 6762

• Fix duration false positive in the dynblock regression tests ¶ References: pull request 6767

• Implement NoneAction() ¶ References: #6758, pull request 6775

• Detect ECS collisions in the packet cache ¶ References: #6747, pull request 6754

• Fix an outstanding counter race when reusing states ¶ References: pull request 6773

21.55 1.3.0

Released: 30th of March 2018

Please review the Upgrade Guide before upgrading from versions < 1.3.x.

21.55.1 New Features

• Add an optional status parameter to Server:setAuto(). ¶ References: pull request 5625

• Add inClientStartup() function. ¶ References: pull request 6072

• Add tag-based routing of queries. ¶ References: pull request 6037

• Add experimental DNS-over-TLS support. ¶ References: pull request 6117, pull request 6175, pull request
6176, pull request 6177, pull request 6189

• Add simple dnstap support (Justin Valentini, Chris Hofstaedtler). ¶ References: pull request 5201, pull
request 6170

• Add experimental XPF support based on draft-bellis-dnsop-xpf-04. ¶ References: #5079, #5654, pull
request 5594, pull request 6220

• Add ERCodeRule() to match on extended RCodes (Chris Hofstaedtler). ¶ References: pull request 6147

• Add TempFailureCacheTTLAction() (Chris Hofstaedtler). ¶ References: pull request 6003

• Add DynBlockRulesGroup to improve processing speed of the maintenance() function by reducing
memory usage and not walking the ringbuffers multiple times. ¶ References: pull request 6391

• Add console ACL functions. ¶ References: #4654, pull request 6399

• Allow adding EDNS Client Subnet information to a query before looking in the cache. This
allows serving ECS enabled answers from the cache when all servers in a pool are down. ¶ References:
#6098, pull request 6400

21.55. 1.3.0 287

https://github.com/PowerDNS/pdns/issues/6535
https://github.com/PowerDNS/pdns/pull/6541
https://github.com/PowerDNS/pdns/pull/6425
https://github.com/PowerDNS/pdns/pull/6429
https://github.com/PowerDNS/pdns/pull/6448
https://github.com/PowerDNS/pdns/pull/6672
https://github.com/PowerDNS/pdns/pull/6706
https://github.com/PowerDNS/pdns/pull/6706
https://github.com/PowerDNS/pdns/issues/6442
https://github.com/PowerDNS/pdns/pull/6718
https://github.com/PowerDNS/pdns/pull/6747
https://github.com/PowerDNS/pdns/pull/6762
https://github.com/PowerDNS/pdns/pull/6767
https://github.com/PowerDNS/pdns/issues/6758
https://github.com/PowerDNS/pdns/pull/6775
https://github.com/PowerDNS/pdns/issues/6747
https://github.com/PowerDNS/pdns/pull/6754
https://github.com/PowerDNS/pdns/pull/6773
https://github.com/PowerDNS/pdns/pull/5625
https://github.com/PowerDNS/pdns/pull/6072
https://github.com/PowerDNS/pdns/pull/6037
https://github.com/PowerDNS/pdns/pull/6117
https://github.com/PowerDNS/pdns/pull/6175
https://github.com/PowerDNS/pdns/pull/6176
https://github.com/PowerDNS/pdns/pull/6176
https://github.com/PowerDNS/pdns/pull/6177
https://github.com/PowerDNS/pdns/pull/6189
https://github.com/PowerDNS/pdns/pull/5201
https://github.com/PowerDNS/pdns/pull/6170
https://github.com/PowerDNS/pdns/pull/6170
https://tools.ietf.org/html/draft-bellis-dnsop-xpf-04
https://github.com/PowerDNS/pdns/issues/5079
https://github.com/PowerDNS/pdns/issues/5654
https://github.com/PowerDNS/pdns/pull/5594
https://github.com/PowerDNS/pdns/pull/5594
https://github.com/PowerDNS/pdns/pull/6220
https://github.com/PowerDNS/pdns/pull/6147
https://github.com/PowerDNS/pdns/pull/6003
https://github.com/PowerDNS/pdns/pull/6391
https://github.com/PowerDNS/pdns/issues/4654
https://github.com/PowerDNS/pdns/pull/6399
https://github.com/PowerDNS/pdns/issues/6098
https://github.com/PowerDNS/pdns/pull/6400

dnsdist

21.55.2 Improvements

• Add cache sharding, recvmmsg and CPU pinning support. With these, the scalability of dnsdist is
drastically improved. ¶ References: #5202, #5859, pull request 5576, pull request 5860

• Add burst option to MaxQPSIPRule() (42wim). ¶ References: pull request 5970

• Add Pools, cacheHitResponseRules to the API. ¶ References: pull request 6022

• Add a class option to health checks. ¶ References: #5748, pull request 5929

• Add UUIDs to rules, this allows tracking rules through modifications and moving them around. ¶ Refer-
ences: pull request 6030

• Apply ResponseRules to locally generated answers (Chris Hofstaedtler). ¶ References: #6182, pull request
6185

• Report LuaAction() and LuaResponseAction() failures in the log and send SERVFAIL instead of
not answering the query (Chris Hofstaedtler). ¶ References: pull request 6283

• Unify global statistics accounting (Chris Hofstaedtler). ¶ References: pull request 6289

• Speed up the processing of large ring buffers. This change will make dnsdist more scalable with a large
number of different clients. ¶ References: pull request 6350, pull request 6366

• Make custom addLuaAction() and addLuaResponseAction() callback’s second return value op-
tional. ¶ References: #6346, pull request 6363

• Add “server-up” metric count to Carbon Reporting (Lowell Mower). ¶ References: pull request 6327

• Add xchacha20 support for DNSCrypt. ¶ References: pull request 6045, pull request 6382

• Scalability improvement: Add an option to use several source ports towards a backend. ¶ References: pull
request 6317

• Add ‘?’ and ‘help’ for providing help() output on dnsdist -c (Kirill Ponomarev, Chris Hofstaedtler). ¶
References: #4845, pull request 5866, pull request 6375

• Replace the Lua mutex with a rw lock to limit contention. This improves the processing speed and paral-
lelism of the policies. ¶ References: pull request 6190, pull request 6381

• Ensure dnsdist compiles on NetBSD (Tom Ivar Helbekkmo). ¶ References: pull request 6146

• Also log eBPF dynamic blocks, as regular dynamic block already are. ¶ References: #5845, pull request
5845

• Ensure large numbers are shown correctly in the API. ¶ References: #6211, pull request 6401

• Add option to showRules() to truncate the output length. ¶ References: #5763, pull request 6402

• Fix several warnings reported by clang’s analyzer and cppcheck, should lead to small performance increases.
¶ References: pull request 6407

21.55.3 Bug Fixes

• Handle SNMP alarms so we can reconnect to the daemon. ¶ References: #5327, pull request 5328

• Fix signed/unsigned comparison warnings on ARM. ¶ References: #5489, pull request 5597

• Keep trying if the first connection to the remote logger failed ¶ References: pull request 5770

• Fix escaping unusual DNS label octets in DNSName is off by one (Kees Monshouwer). ¶ References: pull
request 6018

• Avoid assertion errors in NewServer() (Chris Hofstaedtler). ¶ References: pull request 6403

288 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/5202
https://github.com/PowerDNS/pdns/issues/5859
https://github.com/PowerDNS/pdns/pull/5576
https://github.com/PowerDNS/pdns/pull/5860
https://github.com/PowerDNS/pdns/pull/5970
https://github.com/PowerDNS/pdns/pull/6022
https://github.com/PowerDNS/pdns/issues/5748
https://github.com/PowerDNS/pdns/pull/5929
https://github.com/PowerDNS/pdns/pull/6030
https://github.com/PowerDNS/pdns/issues/6182
https://github.com/PowerDNS/pdns/pull/6185
https://github.com/PowerDNS/pdns/pull/6185
https://github.com/PowerDNS/pdns/pull/6283
https://github.com/PowerDNS/pdns/pull/6289
https://github.com/PowerDNS/pdns/pull/6350
https://github.com/PowerDNS/pdns/pull/6366
https://github.com/PowerDNS/pdns/issues/6346
https://github.com/PowerDNS/pdns/pull/6363
https://github.com/PowerDNS/pdns/pull/6327
https://github.com/PowerDNS/pdns/pull/6045
https://github.com/PowerDNS/pdns/pull/6382
https://github.com/PowerDNS/pdns/pull/6317
https://github.com/PowerDNS/pdns/pull/6317
https://github.com/PowerDNS/pdns/issues/4845
https://github.com/PowerDNS/pdns/pull/5866
https://github.com/PowerDNS/pdns/pull/6375
https://github.com/PowerDNS/pdns/pull/6190
https://github.com/PowerDNS/pdns/pull/6381
https://github.com/PowerDNS/pdns/pull/6146
https://github.com/PowerDNS/pdns/issues/5845
https://github.com/PowerDNS/pdns/pull/5845
https://github.com/PowerDNS/pdns/pull/5845
https://github.com/PowerDNS/pdns/issues/6211
https://github.com/PowerDNS/pdns/pull/6401
https://github.com/PowerDNS/pdns/issues/5763
https://github.com/PowerDNS/pdns/pull/6402
https://github.com/PowerDNS/pdns/pull/6407
https://github.com/PowerDNS/pdns/issues/5327
https://github.com/PowerDNS/pdns/pull/5328
https://github.com/PowerDNS/pdns/issues/5489
https://github.com/PowerDNS/pdns/pull/5597
https://github.com/PowerDNS/pdns/pull/5770
https://github.com/PowerDNS/pdns/pull/6018
https://github.com/PowerDNS/pdns/pull/6018
https://github.com/PowerDNS/pdns/pull/6403

dnsdist

21.55.4 Removals

• Remove the --daemon option from dnsdist. ¶ References: #6329, pull request 6394

21.56 1.2.1

Released: 16th of February 2018

Please review the Upgrade Guide before upgrading from versions < 1.2.x.

21.56.1 New Features

• Add configuration option to disable IP_BIND_ADDRESS_NO_PORT (Dan McCombs). ¶ References:
pull request 5880

21.56.2 Improvements

• Handle bracketed IPv6 addresses without ports (Chris Hofstaedtler). ¶ References: pull request 6057

21.56.3 Bug Fixes

• Make dnsdist dynamic truncate do right thing on TCP/IP. ¶ References: pull request 5647

• Add missing QPSAction ¶ References: pull request 5686

• Don’t create a Remote Logger in client mode. ¶ References: pull request 5847

• Use libsodium’s CFLAGS, we might need them to find the includes. ¶ References: pull request 5858

• Keep the TCP connection open on cache hit, generated answers. ¶ References: pull request 6012

• Add the missing <sys/time.h> include to mplexer.hh for struct timeval. ¶ References: pull request 6041

• Sort the servers based on their ‘order’ after it has been set. ¶ References: pull request 6043

• Quiet unused variable warning on macOS (Chris Hofstaedtler). ¶ References: pull request 6073

• Fix the outstanding counter when an exception is raised. ¶ References: #5652, pull request 6094

• Do not connect the snmpAgent from a dnsdist client. ¶ References: #6163, pull request 6164

21.57 1.2.0

Released: 21st of August 2017

Please review the Upgrade Guide before upgrading from versions < 1.2.x.

21.57.1 New Features

• Add an option to export CNAME records over protobuf. ¶ References: #4709, pull request 4776

• Add TCP management options from RFC 7766 section 10. ¶ References: pull request 4611

• Add an option to ‘mute’ UDP responses per bind. ¶ References: #4527, pull request 4536

• Save history to home-dir, only use CWD as a last resort. ¶ References: #4562, pull request 4779

• Add the setRingBuffersSize() directive to allows changing the ringbuffer size. ¶ References: pull
request 4898

21.56. 1.2.1 289

https://github.com/PowerDNS/pdns/issues/6329
https://github.com/PowerDNS/pdns/pull/6394
https://github.com/PowerDNS/pdns/pull/5880
https://github.com/PowerDNS/pdns/pull/6057
https://github.com/PowerDNS/pdns/pull/5647
https://github.com/PowerDNS/pdns/pull/5686
https://github.com/PowerDNS/pdns/pull/5847
https://github.com/PowerDNS/pdns/pull/5858
https://github.com/PowerDNS/pdns/pull/6012
https://github.com/PowerDNS/pdns/pull/6041
https://github.com/PowerDNS/pdns/pull/6043
https://github.com/PowerDNS/pdns/pull/6073
https://github.com/PowerDNS/pdns/issues/5652
https://github.com/PowerDNS/pdns/pull/6094
https://github.com/PowerDNS/pdns/issues/6163
https://github.com/PowerDNS/pdns/pull/6164
https://github.com/PowerDNS/pdns/issues/4709
https://github.com/PowerDNS/pdns/pull/4776
https://tools.ietf.org/html/rfc7766.html#section-10
https://github.com/PowerDNS/pdns/pull/4611
https://github.com/PowerDNS/pdns/issues/4527
https://github.com/PowerDNS/pdns/pull/4536
https://github.com/PowerDNS/pdns/issues/4562
https://github.com/PowerDNS/pdns/pull/4779
https://github.com/PowerDNS/pdns/pull/4898
https://github.com/PowerDNS/pdns/pull/4898

dnsdist

• Allow TTL alteration via Lua. ¶ References: #4707, pull request 4787

• Add RDRule() to match queries with the RD flag set. ¶ References: pull request 4837

• Add setWHashedPertubation() for consistent whashed results. ¶ References: pull request 4897

• Add tcpConnectTimeout to newServer(). ¶ References: pull request 4818

• Add cache hit response rules. ¶ References: #4708, pull request 4788, pull request 5036

• Add SNMP support. ¶ References: pull request 4989, pull request 5123, pull request 5204

• Allow passing DNSNames as DNSRules. ¶ References: pull request 5070

• Add support for setting the server selection policy on a per pool basis (Robin Geuze). ¶ References: pull
request 5113

• Add a suffixMatch parameter to PacketCache:expungeByName() (Robin Geuze). ¶ Refer-
ences: pull request 5159

• Add an option so the packet cache entries don’t age. ¶ References: #5126, pull request 5136

• Add QNameRule(). ¶ References: pull request 5235

• Add an optional action to addDynBlocks(). ¶ References: pull request 5337

• Add an optional interface parameter to addLocal()/setLocal(). ¶ References: pull request 5344

• Make a truncate action available to DynBlock and Lua. ¶ References: pull request 5386

• Implement a runtime changeable rule that matches IP address for a certain time called
TimedIPSetRule(). ¶ References: pull request 5336

• Add support for returning several IPs to spoof from Lua. ¶ References: pull request 5496

• Add Lua bindings to be able to rotate DNSCrypt keys, see DNSCrypt. ¶ References: #5420, #5507, pull
request 5490, pull request 5508

• Add the capability to set arbitrary tags in protobuf messages. ¶ References: pull request 5396, pull request
5577

• Add setConsoleConnectionsLogging(). ¶ References: #5565, pull request 5581

21.57.2 Improvements

• Merge the client and server nonces to prevent replay attacks. ¶ References: pull request 4815

• Store the computed shared key and reuse it for the response for DNSCrypt messages. ¶ References: pull
request 4813, pull request 4926

• Add setTCPUseSinglePipe() to use a single TCP waiting queue. ¶ References: pull request 4817

• Add sendSizeAndMsgWithTimeout to send size and data in a single call and use it for TCP Fast Open
towards backends. ¶ References: #5494, pull request 4985, pull request 5501

• Tune systemd unit-file for medium-sized installations (Winfried Angele). ¶ References: pull request 4958

• Add the possibility to fill a NetmaskGroup (using NetmaskGroup:addMask()) from exceeds* re-
sults. ¶ References: pull request 5185

• Add labels count to StatNode, only set the name once. ¶ References: pull request 5353

• DNSName: Check that both first two bits are set in compressed labels. ¶ References: #4851, pull request
4852

• Handle unreachable servers at startup, reconnect stale sockets ¶ References: #4131, #4155, pull request
4285

• Gracefully handle invalid addresses in newServer(). ¶ References: #4471, pull request 4474

• Use IP_BIND_ADDRESS_NO_PORT when available. ¶ References: pull request 4786

290 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/4707
https://github.com/PowerDNS/pdns/pull/4787
https://github.com/PowerDNS/pdns/pull/4837
https://github.com/PowerDNS/pdns/pull/4897
https://github.com/PowerDNS/pdns/pull/4818
https://github.com/PowerDNS/pdns/issues/4708
https://github.com/PowerDNS/pdns/pull/4788
https://github.com/PowerDNS/pdns/pull/5036
https://github.com/PowerDNS/pdns/pull/4989
https://github.com/PowerDNS/pdns/pull/5123
https://github.com/PowerDNS/pdns/pull/5204
https://github.com/PowerDNS/pdns/pull/5070
https://github.com/PowerDNS/pdns/pull/5113
https://github.com/PowerDNS/pdns/pull/5113
https://github.com/PowerDNS/pdns/pull/5159
https://github.com/PowerDNS/pdns/issues/5126
https://github.com/PowerDNS/pdns/pull/5136
https://github.com/PowerDNS/pdns/pull/5235
https://github.com/PowerDNS/pdns/pull/5337
https://github.com/PowerDNS/pdns/pull/5344
https://github.com/PowerDNS/pdns/pull/5386
https://github.com/PowerDNS/pdns/pull/5336
https://github.com/PowerDNS/pdns/pull/5496
https://github.com/PowerDNS/pdns/issues/5420
https://github.com/PowerDNS/pdns/issues/5507
https://github.com/PowerDNS/pdns/pull/5490
https://github.com/PowerDNS/pdns/pull/5490
https://github.com/PowerDNS/pdns/pull/5508
https://github.com/PowerDNS/pdns/pull/5396
https://github.com/PowerDNS/pdns/pull/5577
https://github.com/PowerDNS/pdns/pull/5577
https://github.com/PowerDNS/pdns/issues/5565
https://github.com/PowerDNS/pdns/pull/5581
https://github.com/PowerDNS/pdns/pull/4815
https://github.com/PowerDNS/pdns/pull/4813
https://github.com/PowerDNS/pdns/pull/4813
https://github.com/PowerDNS/pdns/pull/4926
https://github.com/PowerDNS/pdns/pull/4817
https://github.com/PowerDNS/pdns/issues/5494
https://github.com/PowerDNS/pdns/pull/4985
https://github.com/PowerDNS/pdns/pull/5501
https://github.com/PowerDNS/pdns/pull/4958
https://github.com/PowerDNS/pdns/pull/5185
https://github.com/PowerDNS/pdns/pull/5353
https://github.com/PowerDNS/pdns/issues/4851
https://github.com/PowerDNS/pdns/pull/4852
https://github.com/PowerDNS/pdns/pull/4852
https://github.com/PowerDNS/pdns/issues/4131
https://github.com/PowerDNS/pdns/issues/4155
https://github.com/PowerDNS/pdns/pull/4285
https://github.com/PowerDNS/pdns/pull/4285
https://github.com/PowerDNS/pdns/issues/4471
https://github.com/PowerDNS/pdns/pull/4474
https://github.com/PowerDNS/pdns/pull/4786

dnsdist

• Add an optional seconds parameter to statNodeRespRing(). ¶ References: #4660, #4775, pull
request 4780

• Report a more specific lua version and report luajit in --version. ¶ References: pull request 4910

• Prevent issues by unshadowing variables. ¶ References: pull request 5056

• Register DNSName::chopOff (@plzz). ¶ References: pull request 4920

• Make includeDirectory() work sorted (Robin Geuze). ¶ References: #5053, pull request 5150, pull
request 5171

• Allow embedded NULs in strings received from Lua. ¶ References: pull request 5147

• Cleanup closed TCP downstream connections. ¶ References: pull request 5163

• Improve reporting of C++ exceptions that bubble up via Lua. ¶ References: pull request 5230

• Add better logging on queries that get dropped, timed out or received. ¶ References: pull request 5253

• Print useful messages when query and response actions are mixed. ¶ References: pull request 5342

• Add DNSRule::toString() and add virtual destructors to DNSRule, DNSAction and DNSRespon-
seAction so the destructors of derived classes are run even when deleted via the base type. ¶ References:
pull request 5497

• Don’t use square brackets for IPv6 in Carbon metrics. ¶ References: #5538, pull request 5579

21.57.3 Bug Fixes

• Unified -k and setKey() behaviour for client and server mode now. ¶ References: pull request 5199

• Refactor SuffixMatchNode using a SuffixMatchTree. ¶ References: #4761, pull request 4950

• Get rid of std::move() calls preventing copy elision. ¶ References: pull request 5359

• Send an HTTP 404 on unknown API paths. ¶ References: pull request 5089

• LuaWrapper: Use the correct index when storing a function. ¶ References: pull request 4775

• Send a latency of 0 over carbon, null over API for down servers. ¶ References: #4689, pull request 4785

• Fix negative port detection for IPv6 addresses on 32-bit. ¶ References: pull request 4911

• Fix crashed on SmartOS/Illumos (Roman Dayneko). ¶ References: #4579, pull request 4877

• Change truncateTC to defaulting to off, having it enabled by default causes an compatibility with RFC
6891 (Robin Geuze). ¶ References: #4857, pull request 4859

• Don’t cache answers without any TTL (like SERVFAIL). ¶ References: #4983, pull request 4987, pull
request 5037

• Fix destination port reporting on “any” binds. ¶ References: pull request 5194

• Correctly truncate EDNS Client Subnetmasks. ¶ References: pull request 5320

• Fix RecordsTypeCountRule()’s handling of the # of records in a section. ¶ References: #5365, pull
request 5369

• Change stats functions to always return lowercase names (Robin Geuze). ¶ References: #5287, pull request
5383

• Only use TCP Fast Open when supported and prevent compiler warnings. ¶ References: pull request 5449,
pull request 5454

• Skip timeouts on the response latency graph. ¶ References: #5559, pull request 5563

• Copy the DNS header before encrypting it in place. ¶ References: #5566, pull request 5580

21.57. 1.2.0 291

https://github.com/PowerDNS/pdns/issues/4660
https://github.com/PowerDNS/pdns/issues/4775
https://github.com/PowerDNS/pdns/pull/4780
https://github.com/PowerDNS/pdns/pull/4780
https://github.com/PowerDNS/pdns/pull/4910
https://github.com/PowerDNS/pdns/pull/5056
https://github.com/PowerDNS/pdns/pull/4920
https://github.com/PowerDNS/pdns/issues/5053
https://github.com/PowerDNS/pdns/pull/5150
https://github.com/PowerDNS/pdns/pull/5171
https://github.com/PowerDNS/pdns/pull/5171
https://github.com/PowerDNS/pdns/pull/5147
https://github.com/PowerDNS/pdns/pull/5163
https://github.com/PowerDNS/pdns/pull/5230
https://github.com/PowerDNS/pdns/pull/5253
https://github.com/PowerDNS/pdns/pull/5342
https://github.com/PowerDNS/pdns/pull/5497
https://github.com/PowerDNS/pdns/issues/5538
https://github.com/PowerDNS/pdns/pull/5579
https://github.com/PowerDNS/pdns/pull/5199
https://github.com/PowerDNS/pdns/issues/4761
https://github.com/PowerDNS/pdns/pull/4950
https://github.com/PowerDNS/pdns/pull/5359
https://github.com/PowerDNS/pdns/pull/5089
https://github.com/PowerDNS/pdns/pull/4775
https://github.com/PowerDNS/pdns/issues/4689
https://github.com/PowerDNS/pdns/pull/4785
https://github.com/PowerDNS/pdns/pull/4911
https://github.com/PowerDNS/pdns/issues/4579
https://github.com/PowerDNS/pdns/pull/4877
https://tools.ietf.org/html/rfc6891.html
https://tools.ietf.org/html/rfc6891.html
https://github.com/PowerDNS/pdns/issues/4857
https://github.com/PowerDNS/pdns/pull/4859
https://github.com/PowerDNS/pdns/issues/4983
https://github.com/PowerDNS/pdns/pull/4987
https://github.com/PowerDNS/pdns/pull/5037
https://github.com/PowerDNS/pdns/pull/5037
https://github.com/PowerDNS/pdns/pull/5194
https://github.com/PowerDNS/pdns/pull/5320
https://github.com/PowerDNS/pdns/issues/5365
https://github.com/PowerDNS/pdns/pull/5369
https://github.com/PowerDNS/pdns/pull/5369
https://github.com/PowerDNS/pdns/issues/5287
https://github.com/PowerDNS/pdns/pull/5383
https://github.com/PowerDNS/pdns/pull/5383
https://github.com/PowerDNS/pdns/pull/5449
https://github.com/PowerDNS/pdns/pull/5454
https://github.com/PowerDNS/pdns/issues/5559
https://github.com/PowerDNS/pdns/pull/5563
https://github.com/PowerDNS/pdns/issues/5566
https://github.com/PowerDNS/pdns/pull/5580

dnsdist

21.57.4 Removals

• Remove BlockFilter. ¶ References: #5513, pull request 5514

• Deprecate syntactic sugar functions. ¶ References: #5069, pull request 5526

21.57.5 misc

• Fix potential pointer wrap-around on 32 bits. ¶ References: pull request 5630

• Make the API available with an API key only. ¶ References: pull request 5631

21.58 1.1.0

Released December 29th 2016

Changes since 1.1.0-beta2:

21.58.1 Improvements

• #4783: Add -latomic on powerpc

• #4812: Handle header-only responses, handle Refused as Servfail in the cache

21.58.2 Bug fixes

• #4762: SuffixMatchNode: Fix an insertion issue for an existing node

• #4772: Fix dnsdist initscript config check

21.59 1.1.0-beta2

Released December 14th 2016

Changes since 1.1.0-beta1:

21.59.1 New features

• #4518: Fix dynblocks over TCP, allow refusing dyn blocked queries

• #4519: Allow altering the ECS behavior via rules and Lua

• #4535: Add DNSQuestion:getDO()

• #4653: getStatisticsCounters() to access counters from Lua

• #4657: Add includeDirectory(dir)

• #4658: Allow editing the ACL via the API

• #4702: Add setUDPTimeout(n)

• #4726: Add an option to return ServFail when no server is available

• #4748: Add setCacheCleaningPercentage()

292 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/issues/5513
https://github.com/PowerDNS/pdns/pull/5514
https://github.com/PowerDNS/pdns/issues/5069
https://github.com/PowerDNS/pdns/pull/5526
https://github.com/PowerDNS/pdns/pull/5630
https://github.com/PowerDNS/pdns/pull/5631
https://github.com/PowerDNS/pdns/pull/4783
https://github.com/PowerDNS/pdns/pull/4812
https://github.com/PowerDNS/pdns/pull/4762
https://github.com/PowerDNS/pdns/pull/4772
https://github.com/PowerDNS/pdns/pull/4518
https://github.com/PowerDNS/pdns/pull/4519
https://github.com/PowerDNS/pdns/pull/4535
https://github.com/PowerDNS/pdns/pull/4653
https://github.com/PowerDNS/pdns/pull/4657
https://github.com/PowerDNS/pdns/pull/4658
https://github.com/PowerDNS/pdns/pull/4702
https://github.com/PowerDNS/pdns/pull/4726
https://github.com/PowerDNS/pdns/pull/4748

dnsdist

21.59.2 Improvements

• #4533: Fix building with clang on OS X and FreeBSD

• #4537: Replace luawrapper’s std::forward/std::make_tuple combo with std::forward_as_tuple (Sangwhan
“fish” Moon)

• #4596: Change the default max number of queued TCP conns to 1000

• #4632: Improve dnsdist error message on a common typo/config mistake

• #4694: Don’t use a const_iterator for erasing (fix compilation with some versions of gcc)

• #4715: Specify that dnsmessage.proto uses protobuf version 2

• #4765: Some service improvements

21.59.3 Bug fixes

• #4425: Fix a protobuf regression (requestor/responder mix-up) caused by a94673e

• #4541: Fix insertion issues in SuffixMatchTree, move it to dnsname.hh

• #4553: Flush output in single command client mode

• #4578: Fix destination address reporting

• #4640: Don’t exit dnsdist on an exception in maintenance

• #4721: Handle exceptions in the UDP responder thread

• #4734: Add the TCP socket to the map only if the connection succeeds. Closes #4733

• #4742: Decrement the queued TCP conn count if writing to the pipe fails

• #4743: Ignore newBPFFilter() and newDynBPFFilter() in client mode

• #4753: Fix FD leak on TCP connection failure, handle TCP worker creation failure

• #4764: Prevent race while creating new TCP worker threads

21.60 1.1.0-beta1

Released September 1st 2016

Changes since 1.0.0:

21.60.1 New features

• #3762 Teeaction: send copy of query to second nameserver, sponge responses

• #3876 Add showResponseRules(), {mv,rm,top}ResponseRule()

• #3936 Filter on opcode, records count/type, trailing data

• #3975 Make dnsdist {A,I}XFR aware, document possible issues

• #4006 Add eBPF source address and qname/qtype filtering

• #4008 Node infrastructure for querying recent traffic

• #4042 Add server-side TCP Fast Open support

• #4050 Add clearRules() and setRules()

• #4114 Add QNameLabelsCountRule() and QNameWireLengthRule()

• #4116 Added src boolean to NetmaskGroupRule to match destination address (Reinier Schoof)

21.60. 1.1.0-beta1 293

https://github.com/PowerDNS/pdns/pull/4533
https://github.com/PowerDNS/pdns/pull/4537
https://github.com/PowerDNS/pdns/pull/4596
https://github.com/PowerDNS/pdns/pull/4632
https://github.com/PowerDNS/pdns/pull/4694
https://github.com/PowerDNS/pdns/pull/4715
https://github.com/PowerDNS/pdns/pull/4765
https://github.com/PowerDNS/pdns/pull/4425
https://github.com/PowerDNS/pdns/pull/4541
https://github.com/PowerDNS/pdns/pull/4553
https://github.com/PowerDNS/pdns/pull/4578
https://github.com/PowerDNS/pdns/pull/4640
https://github.com/PowerDNS/pdns/pull/4721
https://github.com/PowerDNS/pdns/pull/4734
https://github.com/PowerDNS/pdns/pull/4742
https://github.com/PowerDNS/pdns/pull/4743
https://github.com/PowerDNS/pdns/pull/4753
https://github.com/PowerDNS/pdns/pull/4764
https://github.com/PowerDNS/pdns/pull/3762
https://github.com/PowerDNS/pdns/pull/3876
https://github.com/PowerDNS/pdns/pull/3936
https://github.com/PowerDNS/pdns/pull/3975
https://github.com/PowerDNS/pdns/pull/4006
https://github.com/PowerDNS/pdns/pull/4008
https://github.com/PowerDNS/pdns/pull/4042
https://github.com/PowerDNS/pdns/pull/4050
https://github.com/PowerDNS/pdns/pull/4114
https://github.com/PowerDNS/pdns/pull/4116

dnsdist

• #4175 Implemented query counting (Reinier Schoof)

• #4244 Add a setCD parameter to set cd=1 on health check queries

• #4284 Add RCodeRule(), Allow, Delay and Drop response actions

• #4305 Add an optional Lua callback for altering a Protobuf message

• #4309 Add showTCPStats function (RobinGeuze)

• #4329 Add options to LogAction() so it can append (instead of truncate) (Duane Wessels)

21.60.2 Improvements

• #3714 Add documentation links to dnsdist.service (Ruben Kerkhof)

• #3754 Allow the use of custom headers in the web server

• #3826 Implement a ‘quiet’ mode for SuffixMatchNodeRule()

• #3836 Log the content of webserver’s exceptions

• #3858 Only log YaHTTP’s parser exceptions in verbose mode

• #3877 Increase max FDs in systemd unit, warn if clearly too low

• #4019 Add an optional addECS option to TeeAction()

• #4029 Add version and feature information to version output

• #4079 Return an error on RemoteLog{,Response}Action() w/o protobuf

• #4246 API now sends pools as a JSON array instead of a string

• #4302 Add help() and showVersion()

• #4286 Add response rules to the API and Web status page

• #4068 Display the dyn eBPF filters stats in the web interface

21.60.3 Bug fixes

• #3755 Fix RegexRule example in dnsdistconf.lua

• #3773 Stop copying the HTTP request headers to the response

• #3837 Remove dnsdist service file on trusty

• #3840 Catch WrongTypeException in client mode

• #3906 Keep the servers ordered inside pools

• #3988 Fix grepq() output in the README

• #3992 Fix some typos in the AXFR/IXFR documentation

• #3995 Fix comparison between signed and unsigned integer

• #4049 Fix dnsdist rpm building script #4048 (Daniel Stirnimann)

• #4065 Include editline/readline.h instead of readline.h/history.h

• #4067 Disable eBPF support when BPF_FUNC_tail_call is not found

• #4069 Fix a buffer overflow when displaying an OpcodeRule

• #4101 Fix $ expansion in build-dnsdist-rpm

• #4198 newServer setting maxCheckFailures makes no sense (stutiredboy)

• #4205 Prevent the use of “any” addresses for downstream server

294 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/4175
https://github.com/PowerDNS/pdns/pull/4244
https://github.com/PowerDNS/pdns/pull/4284
https://github.com/PowerDNS/pdns/pull/4305
https://github.com/PowerDNS/pdns/pull/4309
https://github.com/PowerDNS/pdns/pull/4329
https://github.com/PowerDNS/pdns/pull/3714
https://github.com/PowerDNS/pdns/pull/3754
https://github.com/PowerDNS/pdns/pull/3826
https://github.com/PowerDNS/pdns/pull/3836
https://github.com/PowerDNS/pdns/pull/3858
https://github.com/PowerDNS/pdns/pull/3877
https://github.com/PowerDNS/pdns/pull/4019
https://github.com/PowerDNS/pdns/pull/4029
https://github.com/PowerDNS/pdns/pull/4079
https://github.com/PowerDNS/pdns/pull/4246
https://github.com/PowerDNS/pdns/pull/4302
https://github.com/PowerDNS/pdns/pull/4286
https://github.com/PowerDNS/pdns/pull/4068
https://github.com/PowerDNS/pdns/pull/3755
https://github.com/PowerDNS/pdns/pull/3773
https://github.com/PowerDNS/pdns/pull/3837
https://github.com/PowerDNS/pdns/pull/3840
https://github.com/PowerDNS/pdns/pull/3906
https://github.com/PowerDNS/pdns/pull/3988
https://github.com/PowerDNS/pdns/pull/3992
https://github.com/PowerDNS/pdns/pull/3995
https://github.com/PowerDNS/pdns/pull/4049
https://github.com/PowerDNS/pdns/pull/4065
https://github.com/PowerDNS/pdns/pull/4067
https://github.com/PowerDNS/pdns/pull/4069
https://github.com/PowerDNS/pdns/pull/4101
https://github.com/PowerDNS/pdns/pull/4198
https://github.com/PowerDNS/pdns/pull/4205

dnsdist

• #4220 Don’t log an error when parsing an invalid UDP query

• #4348 Fix invalid outstanding count for {A,I}XFR over TCP

• #4365 Reset origFD asap to keep the outstanding count correct

• #4375 Tuple requires make_tuple to initialize

• #4380 Fix compilation with clang when eBPF support is enabled

21.61 1.0.0

Released April 21st 2016

Changes since 1.0.0-beta1:

21.61.1 Improvements

• #3700 Create user from the RPM package to drop privs

• #3712 Make check should run testrunner

• #3713 Remove contrib/dnsdist.service (Ruben Kerkhof)

• #3722 Use LT_INIT and disable static objects (Ruben Kerkhof)

• #3724 Include PDNS_CHECK_OS in configure (Chris Hofstaedtler)

• #3728 Document libedit Ctrl-R workaround for CentOS 6

• #3730 Make topBandwidth() behave like other top* functions

• #3731 Clarify a bit the documentation of load-balancing policies

21.61.2 Bug fixes

• #3711 Building rpm needs systemd headers (Ruben Kerkhof)

• #3736 Add missing Lua binding for NetmaskGroupRule()

• #3739 Drop privileges after daemonizing and writing our pid

21.62 1.0.0-beta1

Released April 14th 2016

Changes since 1.0.0-alpha2:

21.62.1 New features

• Per-pool packet cache

• Some actions do not stop the processing anymore when they match, allowing more complex setups: Delay,
Disable Validation, Log, MacAddr, No Recurse and of course None

• The new RE2Rule() is available, using the RE2 regular expression library to match queries, in addition to
the existing POSIX-based RegexRule()

• SpoofAction() now supports multiple A and AAAA records

• Remote logging of questions and answers via Protocol Buffer

21.61. 1.0.0 295

https://github.com/PowerDNS/pdns/pull/4220
https://github.com/PowerDNS/pdns/pull/4348
https://github.com/PowerDNS/pdns/pull/4365
https://github.com/PowerDNS/pdns/pull/4375
https://github.com/PowerDNS/pdns/pull/4380
https://github.com/PowerDNS/pdns/pull/3700
https://github.com/PowerDNS/pdns/pull/3712
https://github.com/PowerDNS/pdns/pull/3713
https://github.com/PowerDNS/pdns/pull/3722
https://github.com/PowerDNS/pdns/pull/3724
https://github.com/PowerDNS/pdns/pull/3728
https://github.com/PowerDNS/pdns/pull/3730
https://github.com/PowerDNS/pdns/pull/3731
https://github.com/PowerDNS/pdns/pull/3711
https://github.com/PowerDNS/pdns/pull/3736
https://github.com/PowerDNS/pdns/pull/3739

dnsdist

21.62.2 Improvements

• #3405 Add health check logging, maxCheckFailures to backend

• #3412 Check config

• #3440 Client operation improvements

• #3466 Add dq binding for skipping packet cache in LuaAction (Jan Broer)

• #3499 Add support for multiple carbon servers

• #3504 Allow accessing the API with an optional API key

• #3556 Add an option to limit the number of queued TCP connections

• #3578 Add a disable-syslog option

• #3608 Export cache stats to carbon

• #3622 Display the ACL content on startup

• #3627 Remove ECS option from response’s OPT RR when necessary

• #3633 Count “TTL too short” cache events

• #3677 systemd-notify support

21.62.3 Bug fixes

• #3388 Lock the Lua context before executing a LuaAction

• #3433 Check that the answer matches the initial query

• #3461 Fix crash when calling rmServer() with an invalid index

• #3550,#3551 Fix build failure on FreeBSD (Ruben Kerkhof)

• #3594 Prevent EOF error for empty console response w/o sodium

• #3634 Prevent dangling TCP fd in case setupTCPDownstream() fails

• #3641 Under threshold, QPS action should return None, not Allow

• #3658 Fix a race condition in MaxQPSIPRule

21.63 1.0.0-alpha2

Released February 5th 2016

Changes since 1.0.0-alpha1:

21.63.1 New features

• Lua functions now receive a DNSQuestion dq object instead of several parameters. This adds a greater
compatibility with PowerDNS and allows adding more parameters without breaking the API (#3198)

• Added a source option to newServer() to specify the local address or interface used to contact a
downstream server (#3138)

• CNAME and IPv6-only support have been added to spoofed responses (#3064)

• grepq() can be used to search for slow queries, along with topSlow()

296 Chapter 21. Changelog

https://github.com/PowerDNS/pdns/pull/3405
https://github.com/PowerDNS/pdns/pull/3412
https://github.com/PowerDNS/pdns/pull/3440
https://github.com/PowerDNS/pdns/pull/3466
https://github.com/PowerDNS/pdns/pull/3499
https://github.com/PowerDNS/pdns/pull/3504
https://github.com/PowerDNS/pdns/pull/3556
https://github.com/PowerDNS/pdns/pull/3578
https://github.com/PowerDNS/pdns/pull/3608
https://github.com/PowerDNS/pdns/pull/3622
https://github.com/PowerDNS/pdns/pull/3627
https://github.com/PowerDNS/pdns/pull/3633
https://github.com/PowerDNS/pdns/pull/3677
https://github.com/PowerDNS/pdns/pull/3388
https://github.com/PowerDNS/pdns/pull/3433
https://github.com/PowerDNS/pdns/pull/3461
https://github.com/PowerDNS/pdns/pull/3550
https://github.com/PowerDNS/pdns/pull/3551
https://github.com/PowerDNS/pdns/pull/3594
https://github.com/PowerDNS/pdns/pull/3634
https://github.com/PowerDNS/pdns/pull/3641
https://github.com/PowerDNS/pdns/pull/3658
https://github.com/PowerDNS/pdns/issues/3198
https://github.com/PowerDNS/pdns/issues/3138
https://github.com/PowerDNS/pdns/issues/3064

dnsdist

• New Lua functions: addDomainCNAMESpoof(), AllowAction() by @bearggg,
exceedQRate(), MacAddrAction(), makeRule(), NotRule(), OrRule(), QClassRule(),
RCodeAction(), SpoofCNAMEAction(), SuffixMatchNodeRule(), TCPRule(),
topSlow()

• NetmaskGroup support have been added in Lua (#3144)

• Added MacAddrAction() to add the source MAC address to the forwarded query (#3313)

21.63.2 Bug fixes

• An issue in DelayPipe could make dnsdist crash at startup

• downstream-timeouts metric was not always updated

• truncateTC was unproperly updating the response length (#3126)

• DNSCrypt responses larger than queries were unproperly truncated

• An issue prevented info message from being displayed in non-verbose mode, fixed by Jan Broer

• Reinstating an expired Dynamic Rule was not correctly logged (#3323)

• Initialized counters in the TCP client thread might have cause FD and memory leak, reported by Martin Pels
(#3300)

• We now drop queries containing no question (qdcount == 0) (#3290)

• Outstanding TCP queries count was not always correct (#3288)

• A locking issue in exceedRespGen() might have caused crashes (#3277)

• Useless sockets were created in client mode (#3257)

• addAnyTCRule() was generating TC=1 responses even over TCP (#3251)

21.63.3 Web interface

• Cleanup of the HTML by Sander Hoentjen

• Fixed an XSS reported by @janeczku (#3217)

• Removed remote images

• Set the charset to UTF-8, added some security-related and CORS HTTP headers

• Added server latency by Jan Broer (#3201)

• Switched to official minified versions of JS scripts, by Sander Hoentjen (#3317)

• Don’t log unauthenticated HTTP request as an authentication failure

21.63.4 Various documentation updates and minor cleanups:

• Added documentation for Advanced DNS Protection features (Dynamic rules, maintenance())

• Make topBandwidth() default to the top 10 clients

• Replaced readline with libedit

• Added GPL2 License (#3200)

• Added incbin License (#3269)

• Updated completion rules

• Removed wrong option --daemon-no by Stefan Schmidt

21.63. 1.0.0-alpha2 297

https://github.com/PowerDNS/pdns/issues/3144
https://github.com/PowerDNS/pdns/issues/3313
https://github.com/PowerDNS/pdns/issues/3126
https://github.com/PowerDNS/pdns/issues/3323
https://github.com/PowerDNS/pdns/issues/3300
https://github.com/PowerDNS/pdns/issues/3290
https://github.com/PowerDNS/pdns/issues/3288
https://github.com/PowerDNS/pdns/issues/3277
https://github.com/PowerDNS/pdns/issues/3257
https://github.com/PowerDNS/pdns/issues/3251
https://github.com/PowerDNS/pdns/issues/3217
https://github.com/PowerDNS/pdns/issues/3201
https://github.com/PowerDNS/pdns/issues/3317
https://github.com/PowerDNS/pdns/issues/3200
https://github.com/PowerDNS/pdns/issues/3269

dnsdist

21.64 1.0.0-alpha1

Released December 24th 2015

Initial release

298 Chapter 21. Changelog

CHAPTER

TWENTYTWO

UPGRADE GUIDE

22.1 1.8.x to 1.9.0

dnsdist now supports a new library for dealing with incoming DNS over HTTPS queries: nghttp2. The previ-
ously used library, h2o, can still be used but is now deprecated, disabled by default (see --with-h2o to enable it
back) and will be removed in the future, as it is unfortunately no longer maintained in a way that is suitable for use
as a library (see https://github.com/h2o/h2o/issues/3230). See the library parameter on the addDOHLocal()
directive for more information on how to select the library used when dnsdist is built with support for both h2o
and nghttp2. The default is now nghttp2 whenever possible. Note that nghttp2 only supports HTTP/2,
and not HTTP/1, while h2o supported both. This is not an issue for actual DNS over HTTPS clients that support
HTTP/2, but might be one in setups running dnsdist behind a reverse-proxy that does not support HTTP/2. See
DNS-over-HTTPS (DoH) for some work-around.

SNMP support is no longer enabled by default during configure, requiring --with-net-snmp to be built.

The use of makeRule() is now deprecated, please use NetmaskGroupRule() or QNameSuffixRule()
instead. Passing a string or list of strings instead of a DNSRule to these functions is deprecated as well,
NetmaskGroupRule() and QNameSuffixRule() should there again be used instead:

• addAction()

• addResponseAction()

• addCacheHitResponseAction()

• addCacheInsertedResponseAction()

• addSelfAnsweredResponseAction()

22.2 1.7.x to 1.8.0

Responses to AXFR and IXFR queries are no longer cached.

Cache-hits are now counted as responses in our metrics.

Cache hits are now inserted into the in-memory ring buffers, while before 1.8.0 only cache misses were inserted.
This has a very noticeable impact on Dynamic Rule Generation since cache hits now considered when computing
the rcode rates and ratios, as well as the response bandwidth rate.

The setMaxTCPConnectionsPerClient() limit is now properly applied to DNS over HTTPS connec-
tions, in addition to DNS over TCP and DNS over TLS ones.

The configuration check will now fail if the configuration file does not exist. For this reason we now create a
default configuration file, based on the file previously called dnsdistconf.lua, which contains commented-
out examples of how to set up dnsdist.

Latency metrics have been broken down:

• per incoming protocol (Do53 UDP, Do53 TCP, DoT, DoH) for global latency metrics

• between UDP (Do53) and TCP (Do53 TCP, DoT, DoH) for backend latency metrics

299

https://github.com/h2o/h2o/issues/3230

dnsdist

22.3 1.7.0 to 1.7.1

In our Docker image, our binaries are no longer granted the net_bind_service capability, as this is unneces-
sary in many deployments. For more information, see the section “Privileged ports” in Docker-README. (This
note was in the 1.6.x to 1.7.0 upgrade guide before, but the change was not present in 1.7.0.)

22.4 1.6.x to 1.7.0

Truncated responses received over UDP for DoH clients will now be retried over TCP.

setTCPUseSinglePipe() has been removed.

Unless set via setMaxTCPClientThreads() the number of TCP workers now defaults to 10, instead of the
number of TCP binds.

Plain-text API keys and passwords for web server authentication are now strongly discouraged. The
hashPassword() method can be used to generate a hashed and salted version of passwords and API keys
instead, so that the plain-text version can no longer be found in either the configuration file or the memory of the
running process.

22.5 1.5.x to 1.6.0

The packet cache no longer hashes EDNS Cookies by default, which means that two queries that are identical
except for the content of their cookie will now be served the same answer. This only works if the backend is not
returning any answer containing EDNS Cookies, otherwise the wrong cookie might be returned to a client. To
prevent this, the cookieHashing=true parameter might be passed to newPacketCache() so that cookies
are hashed, resulting in separate entries in the packet cache.

All TCP worker threads are now created at startup, instead of being created on-demand. The existing behaviour
was useful for very small setups but did not scale quickly to a large amount of TCP connections. The new
behaviour can cause a noticeable increase of TCP connections between dnsdist and its backends, as the TCP
connections are not shared between TCP worker threads. This is especially true for setups with a large number of
frontends (addLocal(), addTLSLocal(), and addDNSCryptBind() directives), as 1.6.0 sets the number
of TCP workers to the number of TCP-enabled binds (with a minimum of 10), unless that number has been set
explicitly via setMaxTCPClientThreads().

Several actions have been renamed so that almost all actions that allow further processing of rules start with ‘Set’,
to prevent mistakes:

• DisableECSAction to SetDisableECSAction()

• DisableValidationAction to SetDisableValidationAction()

• ECSOverrideAction to SetECSOverrideAction()

• ECSPrefixLengthAction to SetECSPrefixLengthAction()

• MacAddrAction to SetMacAddrAction()

• NoRecurseAction to SetNoRecurseAction()

• SkipCacheAction to SetSkipCacheAction()

• TagAction to SetTagAction()

• TagResponseAction to SetTagResponseAction()

• TempFailureCacheTTLAction to SetAdditionalProxyProtocolValueAction()

• SetNegativeAndSOAAction to NegativeAndSOAAction()

Some ambiguous commands have also been renamed to prevent mistakes:

300 Chapter 22. Upgrade Guide

https://github.com/PowerDNS/pdns/blob/master/Docker-README.md#privileged-ports

dnsdist

• topCacheHitResponseRule to mvCacheHitResponseRuleToTop()

• topResponseRule to mvResponseRuleToTop()

• topRule to mvRuleToTop()

• topSelfAnsweredResponseRule to mvSelfAnsweredResponseRuleToTop()

The use of additional parameters on the webserver() command has been deprecated in favor of using
setWebserverConfig().

Regular users should not be impacted by this change, but packagers should be aware that since 1.6.0 dnsdist now
uses the C++17 standard instead of the C++11 one it was previously using.

22.6 1.4.x to 1.5.0

DOH endpoints specified in the fourth parameter of addDOHLocal() are now specified as exact
paths instead of path prefixes. The default endpoint also switched from / to /dns-query. For
example, addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/
etc/ssl/private/example.com.key', { "/dns-query" }) will now only accept queries for /
dns-query and no longer for /dns-query/foo/bar. This change also impacts the HTTP response rules
set via DOHFrontend:setResponsesMap(), since queries whose paths are not allowed will be discarded
before the rules are evaluated. If you want to accept DoH queries on /dns-query and redirect /rfc to the DoH
RFC, you need to list /rfc in the list of paths:

addDOHLocal('2001:db8:1:f00::1', '/etc/ssl/certs/example.com.pem', '/etc/ssl/
→˓private/example.com.key', { '/dns-query', '/rfc'})
map = { newDOHResponseMapEntry("^/rfc$", 307, "https://www.rfc-editor.org/info/
→˓rfc8484") }
dohFE = getDOHFrontend(0)
dohFE:setResponsesMap(map)

The systemd service-file that is installed no longer uses the root user to start. It uses the user and group set
with the --with-service-user and --with-service-group switches during configuration, “dnsdist”
by default. This could mean that dnsdist can no longer read its own configuration, or other data. It is therefore
recommended to recursively chown directories used by dnsdist:

chown -R root:dnsdist /etc/dnsdist

Packages provided on the PowerDNS Repository will chown directories created by them accordingly in the post-
installation steps.

This might not be sufficient if the dnsdist configuration refers to files outside of the /etc/dnsdist directory, like
DoT or DoH certificates and private keys. Many ACME clients used to get and renew certificates, like CertBot,
set permissions assuming that services are started as root. For that particular case, making a copy of the necessary
files in the /etc/dnsdist directory is advised, using for example CertBot’s --deploy-hook feature to copy the
files with the right permissions after a renewal.

The webserver() configuration now has an optional ACL parameter, that defaults to “127.0.0.1, ::1”.

22.7 1.3.x to 1.4.0

addLuaAction() and addLuaResponseAction() have been removed. Instead, use addAction()with
a LuaAction(), or addResponseAction() with a LuaResponseAction().

newPacketCache() now takes an optional table as its second argument, instead of several optional parameters.

Lua’s constants for DNS response codes and QTypes have been moved from the ‘dnsdist’ prefix to, respectively,
the ‘DNSQType’ and ‘DNSRCode’ prefix.

22.6. 1.4.x to 1.5.0 301

https://repo.powerdns.com

dnsdist

To improve security, all ambient capabilities are now dropped after the startup phase, which might prevent launch-
ing the webserver on a privileged port at run-time, or impact some custom Lua code. In addition, systemd’s
sandboxing features are now determined at compile-time, resulting in more restrictions on recent distributions.
See pull requests 7138 and 6634 for more information.

If you are compiling dnsdist, note that several ./configure options have been renamed to provide a more consis-
tent experience. Features that depend on an external component have been prefixed with ‘–with-’ while internal
features use ‘–enable-’. This lead to the following changes:

• --enable-fstrm to --enable-dnstap

• --enable-gnutls to --with-gnutls

• --enable-libsodium to --with-libsodium

• --enable-libssl to --with-libssl

• --enable-re2 to --with-re2

22.8 1.3.2 to 1.3.3

When upgrading from a package before 1.3.3, on CentOS 6 and RHEL 6, dnsdist will be stopped instead of
restarted.

22.9 1.2.x to 1.3.x

In version 1.3.0, these things have changed.

The Working with the dnsdist Console has an ACL now, which is set to {"127.0.0.0/8", "::1/128"}
by default. Add the appropriate setConsoleACL() and addConsoleACL() statements to the configuration
file.

The --daemon option is removed from the dnsdist binary, meaning that dnsdist will not fork to the back-
ground anymore. Hence, it can only be run on the foreground or under a supervisor like systemd, supervisord and
daemon(8).

Due to changes in the architecture of dnsdist, several of the shortcut rules have been removed after deprecating
them in 1.2.0. All removed functions have their equivalent addAction() listed. Please check the configuration
for these statements (or use dnsdist --check-config) and update where needed. This removal affects
these functions:

• addAnyTCRule()

• addDelay()

• addDisableValidationRule()

• addDomainBlock()

• addDomainCNAMESpoof()

• addDomainSpoof()

• addNoRecurseRule()

• addPoolRule()

• addQPSLimit()

• addQPSPoolRule()

302 Chapter 22. Upgrade Guide

dnsdist

22.10 1.1.0 to 1.2.0

In 1.2.0, several configuration options have been changed:

As the amount of possible settings for listen sockets is growing, all listen-related options must now be passed as
a table as the second argument to both addLocal() and setLocal(). See the function’s reference for more
information.

The BlockFilter function is removed, as addAction() combined with a DropAction() can do the
same.

22.10. 1.1.0 to 1.2.0 303

dnsdist

304 Chapter 22. Upgrade Guide

CHAPTER

TWENTYTHREE

SECURITY ADVISORIES

All security advisories for the DNSDist are listed here.

23.1 PowerDNS Security Advisory 2017-01 for dnsdist: Crafted
backend responses can cause a denial of service

• CVE: CVE-2016-7069

• Date: 2017-08-21

• Credit: Guido Vranken

• Affects: dnsdist up to and including 1.2.0 on 32-bit systems

• Not affected: dnsdist 1.2.0, dnsdist on 64-bit (all versions)

• Severity: Low

• Impact: Degraded service or Denial of service

• Exploit: This issue can be triggered by sending specially crafted response packets from a backend

• Risk of system compromise: No

• Solution: Upgrade to a non-affected version

• Workaround: Disable EDNS Client Subnet addition

An issue has been found in dnsdist in the way EDNS0 OPT records are handled when parsing responses from a
backend. When dnsdist is configured to add EDNS Client Subnet to a query, the response may contain an EDNS0
OPT record that has to be removed before forwarding the response to the initial client. On a 32-bit system, the
pointer arithmetic used when parsing the received response to remove that record might trigger an undefined
behavior leading to a crash.

dnsdist up to and including 1.1.0 is affected on 32-bit systems. dnsdist 1.2.0 is not affected, dnsdist on 64-bit
systems is not affected.

For those unable to upgrade to a new version, a minimal patch is available for 1.1.0

We would like to thank Guido Vranken for finding and subsequently reporting this issue.

23.2 PowerDNS Security Advisory 2017-02 for dnsdist: Alteration
of ACLs via API authentication bypass

• CVE: CVE-2017-7557

• Date: 2017-08-21

• Credit: Nixu

305

https://downloads.powerdns.com/patches/2017-01

dnsdist

• Affects: dnsdist 1.1.0

• Not affected: dnsdist 1.0.0, 1.2.0

• Severity: Low

• Impact: Access restriction bypass

• Exploit: This issue can be triggered by tricking an authenticated user into visiting a crafted website

• Risk of system compromise: No

• Solution: Upgrade to a non-affected version

• Workaround: Keep the API read-only (default) via setAPIWritable(false)

An issue has been found in dnsdist 1.1.0, in the API authentication mechanism. API methods should only be
available to a user authenticated via an X-API-Key HTTP header, and not to a user authenticated on the webserver
via Basic Authentication, but it was discovered by Nixu during a source code audit that dnsdist 1.1.0 allows access
to all API methods to both kind of users.

In the default configuration, the API does not provide access to more information than the webserver does, and
therefore this issue has no security implication. However if the API is allowed to make configuration changes,
via the setAPIWritable(true) option, this allows a remote unauthenticated user to trick an authenticated user into
editing dnsdist’s ACLs by making him visit a crafted website containing a Cross-Site Request Forgery.

For those unable to upgrade to a new version, a minimal patch is available for 1.1.0

23.3 PowerDNS Security Advisory for dnsdist 2018-08: Record
smuggling when adding ECS or XPF

• CVE: CVE-2018-14663

• Date: November 8th 2018

• Affects: PowerDNS DNSDist up to and including 1.3.2

• Not affected: 1.3.3

• Severity: Low

• Impact: Insufficient validation

• Exploit: This problem can be triggered via crafted queries

• Risk of system compromise: No

• Solution: Upgrade to a non-affected version

An issue has been found in PowerDNS DNSDist allowing a remote attacker to craft a DNS query with trailing
data such that the addition of a record by dnsdist, for example an OPT record when adding EDNS Client Subnet,
might result in the trailing data being smuggled to the backend as a valid record while not seen by dnsdist. This is
an issue when dnsdist is deployed as a DNS Firewall and used to filter some records that should not be received by
the backend. This issue occurs only when either the ‘useClientSubnet’ or the experimental ‘addXPF’ parameters
are used when declaring a new backend.

This issue has been assigned CVE-2018-14663 by Red Hat.

PowerDNS DNSDist up to and including 1.3.2 is affected.

We would like to thank Richard Gibson for finding and subsequently reporting this issue.

If you have a security problem to report, please see our security policy.

306 Chapter 23. Security Advisories

https://downloads.powerdns.com/patches/2017-02

CHAPTER

TWENTYFOUR

POWERDNS SECURITY POLICY

If you have a security problem to report, please email us at both peter.van.dijk@powerdns.com and
remi.gacogne@powerdns.com. In case you want to encrypt your report using PGP, please use: https://doc.
powerdns.com/powerdns-keyblock.asc

Please do not mail security issues to public lists, nor file a ticket, unless we do not get back to you in a timely man-
ner. We fully credit reporters of security issues, and respond quickly, but please allow us a reasonable timeframe
to coordinate a response.

We remind PowerDNS and dnsdist users that under the terms of the GNU General Public License, PowerDNS and
dnsdist come with ABSOLUTELY NO WARRANTY. This license is included in this documentation.

If you believe you have found a security vulnerability that applies to DNS implementations generally, and you
want to report this responsibly to a number of implementers, you might consider also using the Open Source DNS
Vulnerability mailing list, managed by DNS-OARC.

24.1 YesWeHack

Security issues can also be reported on our YesWeHack page and might fetch a bounty. Do note that only the
PowerDNS software is in scope for the YesWeHack program, not our websites or other infrastructure.

24.2 Disclosure Policy

• Let us know as soon as possible upon discovery of a potential security issue, and we’ll make every effort to
quickly resolve the issue.

• Provide us a reasonable amount of time to resolve the issue before any disclosure to the public or a third-
party.

• We will always credit researchers in our Security Advisories.

307

mailto:peter.van.dijk@powerdns.com
mailto:remi.gacogne@powerdns.com
https://doc.powerdns.com/powerdns-keyblock.asc
https://doc.powerdns.com/powerdns-keyblock.asc
https://www.dns-oarc.net/oarc/oss-dns-vulns/
https://www.dns-oarc.net/oarc/oss-dns-vulns/
https://www.dns-oarc.net/
https://yeswehack.com/programs/powerdns

dnsdist

308 Chapter 24. PowerDNS Security Policy

CHAPTER

TWENTYFIVE

GLOSSARY

ACL Access Control List

Open Resolver A recursive DNS server available for many hosts on the internet. Usually without adequate rate-
limiting, allowing it to be used in reflection attacks.

QPS Queries Per Second

309

dnsdist

310 Chapter 25. Glossary

CHAPTER

TWENTYSIX

POWERDNS/DNSDIST LICENSE

We remind PowerDNS and dnsdist users that under the terms of the GNU General Public License, PowerDNS and
dnsdist come with ABSOLUTELY NO WARRANTY.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we

(continues on next page)

311

dnsdist

(continued from previous page)

want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a

(continues on next page)

312 Chapter 26. PowerDNS/dnsdist license

dnsdist

(continued from previous page)

notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent

(continues on next page)

313

dnsdist

(continued from previous page)

access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

(continues on next page)

314 Chapter 26. PowerDNS/dnsdist license

dnsdist

(continued from previous page)

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively

(continues on next page)

315

dnsdist

(continued from previous page)

convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

316 Chapter 26. PowerDNS/dnsdist license

CHAPTER

TWENTYSEVEN

END OF LIFE STATEMENTS

We aim to have a major release every six months. The latest major release train receives correctness, stability and
security updates by the way of minor releases. We support older releases with critical updates for one year after
the following major release.

Older releases are marked end of life and receive no updates at all. Pre-releases do not receive immediate security
updates.

The currently supported release train of PowerDNS DNSdist is 1.9.

PowerDNS DNSdist 1.8 will only receive critical updates and will be End of Life one year after PowerDNS
DNSdist 1.9 was released.

PowerDNS DNSdist 1.7 will only receive critical updates and will be End of Life one year after PowerDNS
DNSdist 1.8 was released.

Older versions are End of Life.

Note: Users with a commercial agreement with PowerDNS.COM BV or Open-Xchange can receive extended
support for releases which are End Of Life. If you are such a user, these EOL statements do not apply to you.
Please refer to the support commitment for details. Note that for the Open Source support channels we only
support the latest minor release of a release train. That means that we ask you to reproduce potential issues on the
latest minor release first.

Table 1: PowerDNS dnsdist Release Life Cycle
Version Release date Security-Only updates End of Life
1.9 February 16 2024
1.8 March 30 2023 February 16 2024 February 16 2025
1.7 January 17 2022 March 30 2023 March 30 2024
1.6 May 11 2021 March 30 2023 EOL (February 16 2024)
1.5 July 30 2020 January 17 2022 EOL (March 30 2023)
1.4 November 20 2019 May 2021 EOL (January 17 2022)
1.3 March 30 2018 EOL EOL (May 2021)
1.2 August 21 2017 EOL EOL
1.1 December 29 2016 EOL EOL
1.0 April 21 2016 EOL EOL

317

dnsdist

318 Chapter 27. End of life statements

HTTP ROUTING TABLE

/api
GET /api/v1/servers/localhost, 65
GET /api/v1/servers/localhost/config,

66
GET /api/v1/servers/localhost/config/allow-from,

66
GET /api/v1/servers/localhost/pool?name=pool-name,

67
GET /api/v1/servers/localhost/rings?maxQueries=NUM&maxResponses=NUM,

67
GET /api/v1/servers/localhost/statistics,

66
PUT /api/v1/servers/localhost/config/allow-from,

66
DELETE /api/v1/cache?pool=<pool-name>&name=<dns-name>[&type=<dns-type>][&suffix=],

65

/jsonstat
GET /jsonstat, 52

/metrics
GET /metrics, 53

319

dnsdist

320 HTTP Routing Table

INDEX

A
ACL, 309
action (DynBlock attribute), 178
addACL() (built-in function), 155
addAction() (built-in function), 228
addBPFFilterDynBlocks() (built-in function),

209
addCacheHitResponseAction() (built-in func-

tion), 232
addCacheInsertedResponseAction() (built-

in function), 233
addCacheMissAction() (built-in function), 229
addCapabilitiesToRetain() (built-in func-

tion), 144
addConsoleACL() (built-in function), 152
addDNSCryptBind() (built-in function), 212
addDOH3Local() (built-in function), 148
addDOHLocal() (built-in function), 145
addDOQLocal() (built-in function), 149
addDynamicBlock() (built-in function), 176
addDynBlocks() (built-in function), 177
addLocal() (built-in function), 145
addMaintenanceCallback() (built-in function),

185
addResponseAction() (built-in function), 231
addSelfAnsweredResponseAction() (built-in

function), 234
addTLSLocal() (built-in function), 149
addXFRResponseAction() (built-in function),

236
AllowAction() (built-in function), 127
AllowResponseAction() (built-in function), 127
AllRule() (built-in function), 237
AndRule() (built-in function), 244
AsynchronousObject (built-in class), 209
AsynchronousObject:drop(), 209
AsynchronousObject:getDQ(), 209
AsynchronousObject:getDR(), 209
AsynchronousObject:resume(), 209
AsynchronousObject:setRCode(), 209

B
backend (LuaRingEntry attribute), 190
blocks (DynBlock attribute), 178
body (WebRequest attribute), 227
body (WebResponse attribute), 228

bpf (DynBlock attribute), 178
BPFFilter (built-in class), 210
BPFFilter:addRangeRule(), 211
BPFFilter:attachToAllBinds(), 211
BPFFilter:block(), 211
BPFFilter:blockQName(), 211
BPFFilter:getStats(), 211
BPFFilter:lsRangeRule(), 211
BPFFilter:rmRangeRule(), 211
BPFFilter:unblock(), 211
BPFFilter:unblockQName(), 211
bytes (StatNodeStats attribute), 184

C
carbonServer() (built-in function), 220
class (DNSRecord attribute), 217
clearCacheHitResponseRules() (built-in

function), 232
clearCacheInsertedResponseRules()

(built-in function), 233
clearCacheMissRules() (built-in function), 230
clearConsoleHistory() (built-in function), 152
clearDynBlocks() (built-in function), 177
ClearRecordTypesResponseAction() (built-

in function), 127
clearResponseRules() (built-in function), 231
clearRules() (built-in function), 228
clearSelfAnsweredResponseRules() (built-

in function), 235
ClientState (built-in class), 170
ClientState:attachFilter(), 170
ClientState:detachFilter(), 170
ClientState:getEffectiveTLSProvider(),

170
ClientState:getRequestedTLSProvider(),

170
ClientState:getType(), 171
ClientState:toString(), 171
ComboAddress (built-in class), 196
ComboAddress:getPort(), 196
ComboAddress:ipdecrypt(), 196
ComboAddress:ipencrypt(), 196
ComboAddress:isIPv4(), 196
ComboAddress:isIPv6(), 196
ComboAddress:isMappedIPv4(), 196
ComboAddress:mapToIPv4(), 196

321

dnsdist

ComboAddress:toString(), 196
ComboAddress:tostring(), 196
ComboAddress:toStringWithPort(), 196
ComboAddress:tostringWithPort(), 196
ComboAddress:truncate(), 197
contentLength (DNSRecord attribute), 217
contentOffset (DNSRecord attribute), 217
ContinueAction() (built-in function), 128
controlSocket() (built-in function), 152

D
declareMetric() (built-in function), 245
decMetric() (built-in function), 246
DelayAction() (built-in function), 128
DelayResponseAction() (built-in function), 128
delta() (built-in function), 152
deviceID (DNSQuestion attribute), 200
deviceName (DNSQuestion attribute), 200
dh (DNSPacketOverlay attribute), 216
dh (DNSQuestion attribute), 200
DisableECSAction() (built-in function), 128
DisableValidationAction() (built-in func-

tion), 128
DNSCryptCert (built-in class), 213
DNSCryptCert:getClientMagic(), 213
DNSCryptCert:getEsVersion(), 213
DNSCryptCert:getMagic(), 213
DNSCryptCert:getProtocolMinorVersion(),

213
DNSCryptCert:getResolverPublicKey(),

213
DNSCryptCert:getSerial(), 213
DNSCryptCert:getSignature(), 214
DNSCryptCert:getTSEnd(), 214
DNSCryptCert:getTSStart(), 214
DNSCryptCertificatePair (built-in class), 214
DNSCryptCertificatePair:getCertificate(),

214
DNSCryptCertificatePair:isActive(),

214
DNSCryptContext (built-in class), 214
DNSCryptContext:addNewCertificate(),

214
DNSCryptContext:generateAndLoadInMemoryCertificate(),

214
DNSCryptContext:getCertificate(), 214
DNSCryptContext:getCertificatePair(),

214, 215
DNSCryptContext:getProviderName(), 215
DNSCryptContext:loadNewCertificate(),

215
DNSCryptContext:markActive(), 215
DNSCryptContext:markInactive(), 215
DNSCryptContext:printCertificates(),

215
DNSCryptContext:reloadCertificates(),

215

DNSCryptContext:removeInactiveCertificate(),
215

DNSDistProtoBufMessage (built-in class), 217
DNSDistProtoBufMessage:addResponseRR(),

217
DNSDistProtoBufMessage:setBytes(), 217
DNSDistProtoBufMessage:setEDNSSubnet(),

217
DNSDistProtoBufMessage:setProtobufResponseType(),

218
DNSDistProtoBufMessage:setQueryTime(),

218
DNSDistProtoBufMessage:setQuestion(),

218
DNSDistProtoBufMessage:setRequestor(),

218
DNSDistProtoBufMessage:setRequestorFromString(),

218
DNSDistProtoBufMessage:setResponder(),

218
DNSDistProtoBufMessage:setResponderFromString(),

218
DNSDistProtoBufMessage:setResponseCode(),

218
DNSDistProtoBufMessage:setServerIdentity(),

219
DNSDistProtoBufMessage:setTag(), 219
DNSDistProtoBufMessage:setTagArray(),

219
DNSDistProtoBufMessage:setTime(), 219
DNSDistProtoBufMessage:toDebugString(),

219
DNSDistResponseRuleAction (built-in class),

244
DNSDistResponseRuleAction:getAction(),

244
DNSDistResponseRuleAction:getSelector(),

244
DNSDistRuleAction (built-in class), 244
DNSDistRuleAction:getAction(), 244
DNSDistRuleAction:getSelector(), 244
DNSHeader (built-in class), 207
dnsheader (LuaRingEntry attribute), 190
DNSHeader:getAA(), 207
DNSHeader:getAD(), 207
DNSHeader:getCD(), 207
DNSHeader:getID(), 208
DNSHeader:getRA(), 208
DNSHeader:getRD(), 208
DNSHeader:getTC(), 208
DNSHeader:setAA(), 208
DNSHeader:setAD(), 208
DNSHeader:setCD(), 208
DNSHeader:setQR(), 208
DNSHeader:setRA(), 208
DNSHeader:setRD(), 208
DNSHeader:setTC(), 208
DNSName (built-in class), 198

322 Index

dnsdist

DNSName:chopOff(), 198
DNSName:countLabels(), 199
DNSName:isPartOf(), 199
DNSName:makeRelative(), 199
DNSName:toDNSString(), 199
DNSName:toString(), 199
DNSName:tostring(), 199
DNSName:toStringNoDot(), 199
DNSName:wirelength(), 199
DNSNameSet (built-in class), 199
DNSNameSet:add(), 199
DNSNameSet:check(), 200
DNSNameSet:clear(), 199
DNSNameSet:delete(), 200
DNSNameSet:empty(), 199
DNSNameSet:size(), 200
DNSNameSet:toString(), 200
DNSPacketOverlay (built-in class), 216
DNSPacketOverlay:getRecord(), 216
DNSPacketOverlay:getRecordsCountInSection(),

216
DNSQuestion (built-in class), 200
DNSQuestion:addProxyProtocolValue(),

201
DNSQuestion:changeName(), 203
DNSQuestion:getContent(), 201
DNSQuestion:getDO(), 201
DNSQuestion:getEDNSOptions(), 201
DNSQuestion:getHTTPHeaders(), 201
DNSQuestion:getHTTPHost(), 201
DNSQuestion:getHTTPPath(), 202
DNSQuestion:getHTTPQueryString(), 202
DNSQuestion:getHTTPScheme(), 202
DNSQuestion:getProtocol(), 202
DNSQuestion:getProxyProtocolValues(),

202
DNSQuestion:getServerNameIndication(),

202
DNSQuestion:getTag(), 202
DNSQuestion:getTagArray(), 203
DNSQuestion:getTrailingData(), 203
DNSQuestion:sendTrap(), 203
DNSQuestion:setContent(), 203
DNSQuestion:setEDNSOption(), 203
DNSQuestion:setExtendedDNSError(), 203
DNSQuestion:setHTTPResponse(), 204
DNSQuestion:setNegativeAndAdditionalSOA(),

204
DNSQuestion:setProxyProtocolValues(),

204
DNSQuestion:setRestartable(), 204
DNSQuestion:setTag(), 205
DNSQuestion:setTagArray(), 205
DNSQuestion:setTrailingData(), 205
DNSQuestion:spoof(), 205
DNSQuestion:suspend(), 205
DNSRecord (built-in class), 216
DNSResponse (built-in class), 206

DNSResponse:changeName(), 207
DNSResponse:editTTLs(), 206
DNSResponse:restart(), 207
DNSRule (built-in class), 244
DNSRule:getMatches(), 244
DNSSECRule() (built-in function), 237
DnstapLogAction() (built-in function), 128
DnstapLogResponseAction() (built-in func-

tion), 128
DnstapMessage (built-in class), 220
DnstapMessage:setExtra(), 220
DnstapMessage:toDebugString(), 220
DOH3Frontend (built-in class), 190
DOH3Frontend:reloadCertificates(), 190
DOHFrontend (built-in class), 189
DOHFrontend:getAddressAndPort(), 189
DOHFrontend:loadNewCertificatesAndKeys(),

189
DOHFrontend:loadTicketsKeys(), 189
DOHFrontend:reloadCertificates(), 189
DOHFrontend:rotateTicketsKey(), 189
DOHFrontend:setResponsesMap(), 189
domain (DynBlock attribute), 178
DOQFrontend (built-in class), 190
DOQFrontend:reloadCertificates(), 190
DropAction() (built-in function), 129
DropResponseAction() (built-in function), 129
drops (StatNodeStats attribute), 184
DSTPortRule() (built-in function), 237
dumpStats() (built-in function), 171
DynBlock (built-in class), 178
DynBlockRulesGroup (built-in class), 179
dynBlockRulesGroup() (built-in function), 179
DynBlockRulesGroup:apply(), 183
DynBlockRulesGroup:excludeDomains(),

183
DynBlockRulesGroup:excludeRange(), 183
DynBlockRulesGroup:includeRange(), 183
DynBlockRulesGroup:removeRange(), 183
DynBlockRulesGroup:setCacheMissRatio(),

179
DynBlockRulesGroup:setMasks(), 179
DynBlockRulesGroup:setNewBlockInsertedHook(),

180
DynBlockRulesGroup:setQTypeRate(), 181
DynBlockRulesGroup:setQueryRate(), 180
DynBlockRulesGroup:setQuiet(), 183
DynBlockRulesGroup:setRCodeRate(), 180
DynBlockRulesGroup:setRCodeRatio(),

181
DynBlockRulesGroup:setResponseByteRate(),

181
DynBlockRulesGroup:setSuffixMatchRule(),

182
DynBlockRulesGroup:setSuffixMatchRuleFFI(),

182
DynBlockRulesGroup:toString(), 183
DynBPFFilter (built-in class), 211

Index 323

dnsdist

DynBPFFilter:excludeRange(), 212
DynBPFFilter:includeRange(), 212
DynBPFFilter:purgeExpired(), 211

E
ecsOverride (DNSQuestion attribute), 200
ECSOverrideAction() (built-in function), 129
ecsPrefixLength (DNSQuestion attribute), 200
ECSPrefixLengthAction() (built-in function),

129
EDNSOptionRule() (built-in function), 237
EDNSOptionView (built-in class), 208
EDNSOptionView:count(), 208
EDNSOptionView:getValues(), 208
EDNSVersionRule() (built-in function), 238
ERCodeAction() (built-in function), 129
ERCodeRule() (built-in function), 238
errlog() (built-in function), 227
exceedNXDOMAINs() (built-in function), 178
exceedQRate() (built-in function), 178
exceedQTypeRate() (built-in function), 178
exceedRespByterate() (built-in function), 178
exceedServFails() (built-in function), 178

F
ffipolicy (ServerPolicy attribute), 77
fullname (StatNode attribute), 184

G
generateDNSCryptCertificate() (built-in

function), 213
generateDNSCryptProviderKeys() (built-in

function), 212
generateOCSPResponse() (built-in function),

187
getAction() (built-in function), 228
getAddressInfo() (built-in function), 186
getAsynchronousObject() (built-in function),

209
getBind() (built-in function), 170
getBindCount() (built-in function), 170
getCacheHitResponseRule() (built-in func-

tion), 232
getCacheInsertedResponseRule() (built-in

function), 233
getCacheMissAction() (built-in function), 230
getCacheMissRule() (built-in function), 230
getDNSCryptBind() (built-in function), 213
getDNSCryptBindCount() (built-in function),

213
getDOH3Frontend() (built-in function), 171
getDOH3FrontendCount() (built-in function),

171
getDOHFrontend() (built-in function), 171
getDOHFrontendCount() (built-in function), 171
getDOQFrontend() (built-in function), 171
getDOQFrontendCount() (built-in function), 171
getDynamicBlocks() (built-in function), 177

getDynamicBlocksSMT() (built-in function), 177
getListOfAddressesOfNetworkInterface()

(built-in function), 171
getListOfNetworkInterfaces() (built-in

function), 171
getListOfRangesOfNetworkInterface()

(built-in function), 171
getMACAddress() (built-in function), 172
getMetric() (built-in function), 246
getOutgoingTLSSessionCacheSize() (built-

in function), 172
getPool() (built-in function), 167
getPoolNames() (built-in function), 167
getPoolServers() (built-in function), 167
getResolvers() (built-in function), 186
getResponseRule() (built-in function), 231
getRingEntries() (built-in function), 188
getRule() (built-in function), 228
getSelectedBackend() (DNSResponse method),

206
getSelfAnsweredResponseRule() (built-in

function), 235
getServer() (built-in function), 165
getServers() (built-in function), 165
getStatisticsCounters() (built-in function),

186
getTLSContext() (built-in function), 172
getTLSFrontend() (built-in function), 172
getTLSFrontendCount() (built-in function), 172
getTopCacheHitResponseRules() (built-in

function), 172
getTopCacheInsertedResponseRules()

(built-in function), 172
getTopResponseRules() (built-in function), 172
getTopRules() (built-in function), 172
getTopSelfAnsweredRules() (built-in func-

tion), 172
getvars (WebRequest attribute), 227
getVerbose() (built-in function), 173
grepq() (built-in function), 172

H
hashPassword() (built-in function), 153
headers (WebRequest attribute), 227
headers (WebResponse attribute), 228
hits (StatNodeStats attribute), 184
HTTPHeaderRule() (built-in function), 238
HTTPPathRegexRule() (built-in function), 238
HTTPPathRule() (built-in function), 238
HTTPStatusAction() (built-in function), 129

I
inClientStartup() (built-in function), 152
includeDirectory() (built-in function), 144
incMetric() (built-in function), 246
inConfigCheck() (built-in function), 152
infolog() (built-in function), 227
isFFI (ServerPolicy attribute), 77

324 Index

dnsdist

isLua (ServerPolicy attribute), 77
isPerThread (ServerPolicy attribute), 77
isResponse (LuaRingEntry attribute), 190

J
JSON Objects

ConfigSetting, 67
DoHFrontend, 68
Frontend, 68
Pool, 70
ResponseRule, 71
RingEntry, 72
Rule, 70
Server, 71
StatisticItem, 72

K
KeyValueLookupKeyQName() (built-in function),

225
KeyValueLookupKeySourceIP() (built-in func-

tion), 225
KeyValueLookupKeySuffix() (built-in func-

tion), 226
KeyValueLookupKeyTag() (built-in function),

226
KeyValueStore (built-in class), 225
KeyValueStore:lookup(), 225
KeyValueStore:lookupSuffix(), 225
KeyValueStore:reload(), 225
KeyValueStoreLookupAction() (built-in func-

tion), 130
KeyValueStoreLookupRule() (built-in func-

tion), 238
KeyValueStoreRangeLookupAction() (built-

in function), 130
KeyValueStoreRangeLookupRule() (built-in

function), 239

L
labelsCount (StatNode attribute), 184
len (DNSQuestion attribute), 200
LimitTTLResponseAction() (built-in function),

130
loadTLSEngine() (built-in function), 188
loadTLSProvider() (built-in function), 188
localaddr (DNSQuestion attribute), 200
LogAction() (built-in function), 131
LogResponseAction() (built-in function), 131
LuaAction() (built-in function), 132
LuaFFIAction() (built-in function), 132
LuaFFIPerThreadAction() (built-in function),

132
LuaFFIPerThreadResponseAction() (built-in

function), 132
LuaFFIPerThreadRule() (built-in function), 239
LuaFFIResponseAction() (built-in function),

132
LuaFFIRule() (built-in function), 239

LuaResponseAction() (built-in function), 133
LuaRingEntry (built-in class), 190
LuaRule() (built-in function), 239

M
MacAddrAction() (built-in function), 133
macAddress (LuaRingEntry attribute), 190
maintenance() (built-in function), 186
makeIPCipherKey() (built-in function), 187
makeKey() (built-in function), 152
makeRule() (built-in function), 237
MaxQPSIPRule() (built-in function), 239
MaxQPSRule() (built-in function), 240
method (WebRequest attribute), 227
muted (ClientState attribute), 171
mvCacheHitResponseRule() (built-in function),

232
mvCacheHitResponseRuleToTop() (built-in

function), 232
mvCacheInsertedResponseRule() (built-in

function), 234
mvCacheInsertedResponseRuleToTop()

(built-in function), 234
mvCacheMissRule() (built-in function), 230
mvCacheMissRuleToTop() (built-in function),

230
mvResponseRule() (built-in function), 231
mvResponseRuleToTop() (built-in function), 231
mvRule() (built-in function), 228
mvRuleToTop() (built-in function), 229
mvSelfAnsweredResponseRule() (built-in

function), 235
mvSelfAnsweredResponseRuleToTop()

(built-in function), 235
mvXFRResponseRule() (built-in function), 236
mvXFRResponseRuleToTop() (built-in function),

236

N
name (DNSRecord attribute), 217
name (Server attribute), 167
name (ServerPolicy attribute), 77
NegativeAndSOAAction() (built-in function),

133
Netmask (built-in class), 197
Netmask:empty(), 197
Netmask:getBits(), 197
Netmask:getMaskedNetwork(), 197
Netmask:getNetwork(), 197
Netmask:isIPv4(), 197
Netmask:isIPv6(), 197
Netmask:match(), 197
Netmask:toString(), 197
NetmaskGroup (built-in class), 197
NetmaskGroup:addMask(), 198
NetmaskGroup:addMasks(), 198
NetmaskGroup:addNMG(), 198
NetmaskGroup:clear(), 198

Index 325

dnsdist

NetmaskGroup:match(), 198
NetmaskGroup:size(), 198
NetmaskGroupRule() (built-in function), 240
newBPFFilter() (built-in function), 209
newCA() (built-in function), 196
newCDBKVStore() (built-in function), 226
newDNSName() (built-in function), 198
newDNSNameSet() (built-in function), 199
newDNSPacketOverlay() (built-in function), 216
newDOHResponseMapEntry() (built-in function),

189
newDynBPFFilter() (built-in function), 210
newFrameStreamTcpLogger() (built-in func-

tion), 220
newFrameStreamUnixLogger() (built-in func-

tion), 219
newLMDBKVStore() (built-in function), 226
newNetmask() (built-in function), 197
newNMG() (built-in function), 197
newPacketCache() (built-in function), 168
newRemoteLogger() (built-in function), 217
newRuleAction() (built-in function), 237
newServer() (built-in function), 157
newServerPolicy() (built-in function), 77
newSuffixMatchNode() (built-in function), 184
newSVCRecordParameters() (built-in function),

244
newThread() (built-in function), 186
newTLSCertificate() (built-in function), 188
newXSK() (built-in function), 246
noerrors (StatNodeStats attribute), 184
NoneAction() (built-in function), 134
NoRecurseAction() (built-in function), 134
NotRule() (built-in function), 244
nxdomains (StatNodeStats attribute), 184

O
opcode (DNSQuestion attribute), 200
OpcodeRule() (built-in function), 240
Open Resolver, 309
order (Server attribute), 167
OrRule() (built-in function), 244

P
PacketCache (built-in class), 169
PacketCache:dump(), 169
PacketCache:expunge(), 169
PacketCache:expungeByName(), 169
PacketCache:getAddressListByDomain(),

169
PacketCache:getDomainListByAddress(),

170
PacketCache:getStats(), 170
PacketCache:isFull(), 170
PacketCache:printStats(), 170
PacketCache:purgeExpired(), 170
PacketCache:toString(), 170
path (WebRequest attribute), 227

PayloadSizeRule() (built-in function), 240
place (DNSRecord attribute), 217
policy (ServerPolicy attribute), 77
pool (DNSQuestion attribute), 200
PoolAction() (built-in function), 134
PoolAvailableRule() (built-in function), 243
PoolOutstandingRule() (built-in function), 243
postvars (WebRequest attribute), 227
printDNSCryptProviderFingerprint()

(built-in function), 213
ProbaRule() (built-in function), 240
protocol (LuaRingEntry attribute), 190
ProxyProtocolValueRule() (built-in function),

240

Q
qclass (DNSPacketOverlay attribute), 216
qclass (DNSQuestion attribute), 200
QClassRule() (built-in function), 241
qname (DNSPacketOverlay attribute), 216
qname (DNSQuestion attribute), 200
qname (LuaRingEntry attribute), 190
QNameLabelsCountRule() (built-in function),

241
QNameRule() (built-in function), 241
QNameSetRule() (built-in function), 241
QNameSuffixRule() (built-in function), 241
QNameWireLengthRule() (built-in function), 241
QPS, 309
QPSAction() (built-in function), 134
QPSPoolAction() (built-in function), 134
qtype (DNSPacketOverlay attribute), 216
qtype (DNSQuestion attribute), 200
qtype (LuaRingEntry attribute), 190
QTypeRule() (built-in function), 241
queries (StatNodeStats attribute), 184

R
rcode (DNSQuestion attribute), 201
RCodeAction() (built-in function), 134
RCodeRule() (built-in function), 242
RDRule() (built-in function), 242
RE2Rule() (built-in function), 242
reason (DynBlock attribute), 178
RecordsCountRule() (built-in function), 242
RecordsTypeCountRule() (built-in function),

242
RegexRule() (built-in function), 242
registerDynBPFFilter() (built-in function),

210
registerWebHandler() (built-in function), 154
reloadAllCertificates() (built-in function),

144
remoteaddr (DNSQuestion attribute), 201
RemoteLogAction() (built-in function), 135
RemoteLogResponseAction() (built-in func-

tion), 135
requestor (LuaRingEntry attribute), 190

326 Index

dnsdist

requestorID (DNSQuestion attribute), 201
RFC

RFC 1918, 9, 81
RFC 3986#section-3.2.2, 144
RFC 5077, 147, 150
RFC 6066, 112
RFC 6891, 192, 291
RFC 6891#section-6.2.5, 192
RFC 6960, 111
RFC 7766#section-10, 289
RFC 7873, 187
RFC 8906, 187

rmACL() (built-in function), 155
rmCacheHitResponseRule() (built-in function),

233
rmCacheInsertedResponseRule() (built-in

function), 234
rmCacheMissRule() (built-in function), 230
rmResponseRule() (built-in function), 231
rmRule() (built-in function), 229
rmSelfAnsweredResponseRule() (built-in

function), 235
rmServer() (built-in function), 165
rmXFRResponseRule() (built-in function), 236

S
sendCustomTrap() (built-in function), 221
Server (built-in class), 166
Server:addPool(), 166
Server:getDrops(), 166
Server:getLatency(), 166
Server:getName(), 166
Server:getNameWithAddr(), 166
Server:getOutstanding(), 166
Server:isUp(), 166
Server:rmPool(), 166
Server:setAuto(), 166
Server:setDown(), 166
Server:setLazyAuto(), 166
Server:setQPS(), 166
Server:setUp(), 167
Server:toString(), 77
ServerPolicy (built-in class), 77
ServerPolicy.policy() (built-in function), 77
ServerPool (built-in class), 167
ServerPool:getCache(), 167
ServerPool:getECS(), 167
ServerPool:setCache(), 167
ServerPool:setECS(), 167
ServerPool:unsetCache(), 167
servfails (StatNodeStats attribute), 184
setACL() (built-in function), 155
setACLFromFile() (built-in function), 155
setAddEDNSToSelfGeneratedResponses()

(built-in function), 192
SetAdditionalProxyProtocolValueAction()

(built-in function), 136

setAllowEmptyResponse() (built-in function),
187

setAPIWritable() (built-in function), 153
setCacheCleaningDelay() (built-in function),

222
setCacheCleaningPercentage() (built-in

function), 222
setCacheMissRules() (built-in function), 230
setConsistentHashingBalancingFactor()

(built-in function), 77
setConsoleACL() (built-in function), 153
setConsoleConnectionsLogging() (built-in

function), 152
setConsoleMaximumConcurrentConnections()

(built-in function), 152
setConsoleOutputMaxMsgSize() (built-in

function), 153
setDefaultBPFFilter() (built-in function), 210
SetDisableECSAction() (built-in function), 136
SetDisableValidationAction() (built-in

function), 136
setDoHDownstreamCleanupInterval()

(built-in function), 221
setDoHDownstreamMaxIdleTime() (built-in

function), 221, 223
setDropEmptyQueries() (built-in function), 187
setDynBlocksAction() (built-in function), 177
setDynBlocksPurgeInterval() (built-in func-

tion), 177
SetECSAction() (built-in function), 137
setECSOverride() (built-in function), 156
SetECSOverrideAction() (built-in function),

137
SetECSPrefixLengthAction() (built-in func-

tion), 137
setECSSourcePrefixV4() (built-in function),

156
setECSSourcePrefixV6() (built-in function),

156
SetEDNSOptionAction() (built-in function), 137
SetExtendedDNSErrorAction() (built-in func-

tion), 137
SetExtendedDNSErrorResponseAction()

(built-in function), 137
setKey() (built-in function), 153
setLocal() (built-in function), 152
SetMacAddrAction() (built-in function), 137
setMaxCachedTCPConnectionsPerDownstream()

(built-in function), 221
setMaxIdleDoHConnectionsPerDownstream()

(built-in function), 221
SetMaxReturnedTTLAction() (built-in func-

tion), 138
SetMaxReturnedTTLResponseAction()

(built-in function), 138
setMaxTCPClientThreads() (built-in function),

221
setMaxTCPConnectionDuration() (built-in

Index 327

dnsdist

function), 222
setMaxTCPConnectionsPerClient() (built-in

function), 222
setMaxTCPQueriesPerConnection() (built-in

function), 222
setMaxTCPQueuedConnections() (built-in

function), 222
SetMaxTTLResponseAction() (built-in func-

tion), 138
setMaxUDPOutstanding() (built-in function),

222
setMetric() (built-in function), 246
SetMinTTLResponseAction() (built-in func-

tion), 138
SetNegativeAndSOAAction() (built-in func-

tion), 138
SetNoRecurseAction() (built-in function), 138
setOutgoingDoHWorkerThreads() (built-in

function), 222
setOutgoingTLSSessionsCacheCleanupDelay()

(built-in function), 185
setOutgoingTLSSessionsCacheMaxTicketsPerBackend()

(built-in function), 185
setOutgoingTLSSessionsCacheMaxTicketValidity()

(built-in function), 185
setPayloadSizeOnSelfGeneratedAnswers()

(built-in function), 192
setPoolServerPolicy() (built-in function), 78
setPoolServerPolicyLua() (built-in function),

78
setProxyProtocolACL() (built-in function), 155
setProxyProtocolApplyACLToProxiedClients()

(built-in function), 156
setProxyProtocolMaximumPayloadSize()

(built-in function), 187
SetProxyProtocolValuesAction() (built-in

function), 139
setRandomizedIdsOverUDP() (built-in func-

tion), 223
setRandomizedOutgoingSockets() (built-in

function), 223
SetReducedTTLResponseAction() (built-in

function), 139
setRingBuffersLockRetries() (built-in func-

tion), 156
setRingBuffersOptions() (built-in function),

156
setRingBuffersSize() (built-in function), 157
setRoundRobinFailOnNoServer() (built-in

function), 79
setRules() (built-in function), 229
setSecurityPollInterval() (built-in func-

tion), 193
setSecurityPollSuffix() (built-in function),

193
setServerPolicy() (built-in function), 78
setServerPolicyLua() (built-in function), 78
setServerPolicyLuaFFI() (built-in function),

78
setServerPolicyLuaFFIPerThread() (built-

in function), 78
setServFailWhenNoServer() (built-in func-

tion), 78
SetSkipCacheAction() (built-in function), 139
SetSkipCacheResponseAction() (built-in

function), 139
setStaleCacheEntriesTTL() (built-in func-

tion), 222
setStructuredLogging() (built-in function),

173
setSyslogFacility() (built-in function), 144
SetTagAction() (built-in function), 139
SetTagResponseAction() (built-in function),

139
setTCPDownstreamCleanupInterval()

(built-in function), 222
setTCPFastOpenKey() (built-in function), 187
setTCPInternalPipeBufferSize() (built-in

function), 223
setTCPRecvTimeout() (built-in function), 223
setTCPSendTimeout() (built-in function), 223
setTCPUseSinglePipe() (built-in function), 223
SetTempFailureCacheTTLAction() (built-in

function), 140
setUDPMultipleMessagesVectorSize()

(built-in function), 223
setUDPSocketBufferSizes() (built-in func-

tion), 224
setUDPTimeout() (built-in function), 224
setVerbose() (built-in function), 173
setVerboseHealthChecks() (built-in function),

173
setVerboseLogDestination() (built-in func-

tion), 174
setWebserverConfig() (built-in function), 154
setWeightedBalancingFactor() (built-in

function), 79
setWHashedPertubation() (built-in function),

75
showACL() (built-in function), 156
showBinds() (built-in function), 174
showCacheHitResponseRules() (built-in func-

tion), 233
showCacheInsertedResponseRules() (built-

in function), 234
showCacheMissRules() (built-in function), 230
showConsoleACL() (built-in function), 153
showDNSCryptBinds() (built-in function), 213
showDOH3Frontends() (built-in function), 174
showDOHFrontends() (built-in function), 174
showDOHResponseCodes() (built-in function),

174
showDOQFrontends() (built-in function), 174
showDynBlocks() (built-in function), 177
showPools() (built-in function), 167
showPoolServerPolicy() (built-in function), 79

328 Index

dnsdist

showResponseLatency() (built-in function), 174
showResponseRules() (built-in function), 231
showRules() (built-in function), 229
showSelfAnsweredResponseRules() (built-in

function), 235
showServers() (built-in function), 174
showTCPStats() (built-in function), 175
showTLSContexts() (built-in function), 175
showTLSErrorCounters() (built-in function),

175
showVersion() (built-in function), 175
showWebserverConfig() (built-in function), 155
showXFRResponseRules() (built-in function),

236
size (DNSQuestion attribute), 201
size (LuaRingEntry attribute), 190
skipCache (DNSQuestion attribute), 201
SkipCacheAction() (built-in function), 140
SNIRule() (built-in function), 242
snmpAgent() (built-in function), 221
SNMPTrapAction() (built-in function), 140
SNMPTrapResponseAction() (built-in function),

140
SpoofAction() (built-in function), 140
SpoofCNAMEAction() (built-in function), 140
SpoofPacketAction() (built-in function), 142
SpoofRawAction() (built-in function), 141
SpoofSVCAction() (built-in function), 142
StatNode (built-in class), 183
StatNode:numChildren(), 184
StatNodeStats (built-in class), 184
status (WebResponse attribute), 228
submitToMainThread() (built-in function), 186
SuffixMatchNode (built-in class), 184
SuffixMatchNode:add(), 184
SuffixMatchNode:check(), 184
SuffixMatchNode:getBestMatch(), 185
SuffixMatchNode:remove(), 185
SuffixMatchNodeRule() (built-in function), 243
SVCRecordParameters (built-in class), 245

T
TagAction() (built-in function), 142
TagResponseAction() (built-in function), 143
TagRule() (built-in function), 243
TCAction() (built-in function), 143
tcp (DNSQuestion attribute), 201
TCPRule() (built-in function), 243
TCResponseAction() (built-in function), 143
TeeAction() (built-in function), 143
TempFailureCacheTTLAction() (built-in func-

tion), 143
tempFailureTTL (DNSQuestion attribute), 201
testCrypto() (built-in function), 153
threadmessage() (built-in function), 186
TimedIPSetRule (built-in class), 85
TimedIPSetRule() (built-in function), 85
TimedIPSetRule:add(), 85

TimedIPSetRule:cleanup(), 85
TimedIPSetRule:clear(), 85
TimedIPSetRule:slice(), 86
timespec (built-in class), 191
TLSCertificate (built-in class), 191
TLSContext (built-in class), 191
TLSContext:loadTicketsKeys(), 191
TLSContext:rotateTicketsKey(), 191
TLSFrontend (built-in class), 191
TLSFrontend:getAddressAndPort(), 191
TLSFrontend:loadNewCertificatesAndKeys(),

191
TLSFrontend:loadTicketsKeys(), 192
TLSFrontend:reloadCertificates(), 192
TLSFrontend:rotateTicketsKey(), 192
topBandwidth() (built-in function), 175
topCacheHitResponseRule() (built-in func-

tion), 233
topCacheHitResponseRules() (built-in func-

tion), 175
topCacheInsertedResponseRules() (built-in

function), 175
topClients() (built-in function), 175
topQueries() (built-in function), 175
topResponseRule() (built-in function), 232
topResponseRules() (built-in function), 176
topResponses() (built-in function), 175
topRule() (built-in function), 229
topRules() (built-in function), 176
topSelfAnsweredResponseRule() (built-in

function), 235
topSelfAnsweredResponseRules() (built-in

function), 176
topSlow() (built-in function), 176
TrailingDataRule() (built-in function), 243
ttl (DNSRecord attribute), 217
tv_nsec (timespec attribute), 191
tv_sec (timespec attribute), 191
type (DNSRecord attribute), 217

U
unregisterDynBPFFilter() (built-in function),

210
until (DynBlock attribute), 178
upStatus (Server attribute), 167
usec (LuaRingEntry attribute), 190
useECS (DNSQuestion attribute), 201

V
version (WebRequest attribute), 227
vinfolog() (built-in function), 227

W
warning (DynBlock attribute), 178
warnlog() (built-in function), 227
WebRequest (built-in class), 227
WebResponse (built-in class), 227
webserver() (built-in function), 153

Index 329

dnsdist

weight (Server attribute), 167
when (LuaRingEntry attribute), 191

X
XskSocket (built-in class), 247
XskSocket:getMetrics(), 247

330 Index

	dnsdist Overview
	Running dnsdist
	Questions, requests or comments?

	Installing dnsdist
	Installing from Packages
	Debian
	Red Hat
	FreeBSD

	Installing from Source
	From tarball
	From git
	OS Specific Instructions
	Build options

	Quickstart Guide
	Running in the Foreground
	dnsdist Console and Configuration
	Changing Server Settings

	Restricting Access
	Securing the path to the backend
	More Information

	Running and Configuring dnsdist
	Running as unprivileged user
	Understanding how queries are forwarded to backends

	Packet Policies
	Packet Actions
	Examples

	Managing Rules

	Statistics
	acl-drops
	cache-hits
	cache-misses
	cpu-iowait
	cpu-steal
	cpu-sys-msec
	cpu-user-msec
	doh-query-pipe-full
	doh-response-pipe-full
	doq-response-pipe-full
	downstream-send-errors
	downstream-timeouts
	dyn-block-nmg-size
	dyn-blocked
	empty-queries
	fd-usage
	frontend-noerror
	frontend-nxdomain
	frontend-servfail
	latency-avg100
	latency-avg1000
	latency-avg10000
	latency-avg1000000
	latency-bucket
	latency-count
	latency-doh-avg100
	latency-doh-avg1000
	latency-doh-avg10000
	latency-doh-avg1000000
	latency-doq-avg100
	latency-doq-avg1000
	latency-doq-avg10000
	latency-doq-avg1000000
	latency-dot-avg100
	latency-dot-avg1000
	latency-dot-avg10000
	latency-dot-avg1000000
	latency-slow
	latency-sum
	latency-tcp-avg100
	latency-tcp-avg1000
	latency-tcp-avg10000
	latency-tcp-avg1000000
	latency0-1
	latency1-10
	latency10-50
	latency50-100
	latency100-1000
	no-policy
	noncompliant-queries
	noncompliant-responses
	outgoing-doh-query-pipe-full
	proxy-protocol-invalid
	queries
	rdqueries
	real-memory-usage
	responses
	rule-drop
	rule-nxdomain
	rule-refused
	rule-servfail
	rule-truncated
	security-status
	self-answered
	servfail-responses
	tcp-cross-protocol-query-pipe-full
	tcp-cross-protocol-response-pipe-full
	tcp-listen-overflows
	tcp-query-pipe-full
	trunc-failures
	udp-in-csum-errors
	udp-in-errors
	udp-noport-errors
	udp-recvbuf-errors
	udp-sndbuf-errors
	udp6-in-csum-errors
	udp6-in-errors
	udp6-noport-errors
	udp6-recvbuf-errors
	udp6-sndbuf-errors
	uptime

	Caching Responses
	Exporting statistics via Carbon
	Setting up a carbon export
	Query counters

	Working with the dnsdist Console
	DNS-over-HTTP/3 (DoH3)
	Incoming
	Advertising DNS over HTTP/3 support

	DNS-over-HTTPS (DoH)
	Incoming
	Advertising DNS over HTTP/3 support
	Custom responses
	DNS over HTTP
	HTTP/1 support
	Internal design
	Investigating issues

	Outgoing
	Internal design

	DNS-over-QUIC (DoQ)
	Incoming

	DNS-over-TLS
	Incoming
	Outgoing
	Investigating issues

	DNSCrypt
	Configuring Downstream Servers
	Healthcheck
	Lazy health-checking

	Source address selection
	Securing the channel
	Securing the path to the backend

	Dynamic Rule Generation
	DynBlockRulesGroup
	Rate rules and size of the ring buffers

	Guides
	Built-in webserver
	Security of the Webserver
	dnsdist API

	Server pools
	Loadbalancing and Server Policies
	Built-in Policies
	Lua server policies
	ServerPolicy Objects
	Functions

	Advanced Topics
	Access Control
	Listening on different addresses
	Modifying the ACL

	Passing the source address to the backend
	Using EDNS Client Subnet
	X-Proxied-For
	Proxy Protocol
	Influence on caching

	TeeAction: copy the DNS traffic stream
	Lua actions in rules
	Runtime-modifiable IP address sets
	Rules for traffic exceeding QPS limits
	eBPF Socket Filtering
	Requirements
	External program, maps and XDP filtering

	Performance Tuning
	UDP and incoming DNS over HTTPS
	AF_XDP / XSK
	UDP buffer sizes
	Outgoing DoH
	TCP and DNS over TLS
	TLS performance
	DNS over QUIC
	Rules and Lua
	Lock contention and sharding
	Memory usage
	Firewall connection tracking
	Network interface receive queues

	SNMP support
	AXFR, IXFR and NOTIFY
	In front of primaries
	In front of secondaries

	Running multiple instances
	Using systemd

	Out-of-order
	OCSP Stapling
	Local PKI
	Certificate signed by an external authority
	Testing

	TLS Certificates Management
	Password-protected PKCS12 files
	Reloading certificates
	TLS sessions
	OCSP stapling

	TLS Sessions Management
	TLS sessions
	Keys management for incoming connections in dnsdist
	Content of the STEK file
	Sessions management for outgoing connections

	Internal Design
	UDP design
	TCP / DoT design
	DNS over HTTP/2 design
	DNS over HTTP/3 design
	DoQ design

	Asynchronous processing
	AF_XDP / XSK
	Performance

	Reference Guides
	Rule Actions
	Configuration Reference
	Functions and Types
	Global configuration
	Servers
	Pools
	Client State
	Status, Statistics and More
	Dynamic Blocks
	Outgoing TLS tickets cache management
	Other functions

	Constants
	OPCode
	DNSClass
	RCode
	EDNSOptionCode
	DNS Packet Sections
	DNSAction
	DNSQType
	DNSResponseAction

	ComboAddress
	Netmask
	NetmaskGroup
	DNSName objects
	Functions and methods of a DNSName

	DNSNameSet objects
	Functions and methods of a DNSNameSet

	The DNSQuestion (dq) object
	DNSResponse object
	DNSHeader (dh) object
	EDNSOptionView object
	AsynchronousObject object
	eBPF functions and objects
	DNSCrypt objects and functions
	Certificates
	Certificate Pairs
	Context

	DNS Parser
	DNSPacketOverlay

	DNSRecord object
	Protobuf Logging Reference
	dnstap Logging Reference
	Carbon export
	SNMP reporting
	Tuning related functions
	Key Value Store functions and objects
	Logging
	Webserver-related objects
	Rules management
	Incoming queries
	Cache misses
	Responses
	Cache hits
	Cache inserted
	Self-answered responses
	XFR
	Convenience Functions

	Rule selectors
	Combining Rules
	Objects

	SVCRecordParameters
	Custom Metrics
	XSK / AF_XDP functions and objects

	Manual Pages
	dnsdist
	Synopsis
	Description
	Scope
	Options
	Bugs
	Resources

	Changelog
	1.9.3
	Bug Fixes

	1.9.2
	Improvements
	Bug Fixes

	1.9.1
	Bug Fixes

	1.9.0
	Improvements
	Bug Fixes

	1.9.0-rc1
	New Features
	Improvements
	Bug Fixes

	1.8.3
	Improvements
	Bug Fixes

	1.9.0-alpha4
	New Features
	Improvements
	Bug Fixes

	1.9.0-alpha3
	New Features
	Improvements
	Bug Fixes
	misc

	1.9.0-alpha2
	1.8.2
	Bug Fixes

	1.7.5
	Bug Fixes

	1.9.0-alpha1
	New Features
	Improvements
	Removals

	1.8.1
	New Features
	Improvements
	Bug Fixes

	1.7.4
	New Features
	Bug Fixes

	1.8.0
	Bug Fixes

	1.8.0-rc3
	Improvements
	Bug Fixes

	1.8.0-rc2
	Improvements
	Bug Fixes

	1.8.0-rc1
	New Features
	Improvements
	Bug Fixes
	Removals

	1.7.3
	Improvements

	1.7.2
	Improvements
	Bug Fixes

	1.7.1
	Improvements
	Bug Fixes

	1.7.0
	Bug Fixes

	1.7.0-rc1
	Improvements
	Bug Fixes

	1.7.0-beta2
	Improvements
	Bug Fixes

	1.7.0-beta1
	New Features
	Improvements
	Bug Fixes

	1.7.0-alpha2
	New Features
	Improvements
	Bug Fixes

	1.7.0-alpha1
	New Features
	Improvements
	Bug Fixes

	1.6.1
	New Features
	Bug Fixes

	1.6.0
	1.5.2
	Bug Fixes

	1.6.0-rc2
	Improvements
	Bug Fixes

	1.6.0-rc1
	Improvements
	Bug Fixes

	1.6.0-alpha3
	Improvements
	Bug Fixes

	1.6.0-alpha2
	New Features
	Improvements
	Bug Fixes

	1.6.0-alpha1
	New Features
	Improvements
	Bug Fixes
	Removals

	1.5.1
	Improvements
	Bug Fixes

	1.5.0
	Improvements
	Bug Fixes

	1.5.0-rc4
	Bug Fixes

	1.5.0-rc3
	New Features
	Improvements
	Bug Fixes

	1.5.0-rc2
	Improvements
	Bug Fixes

	1.5.0-rc1
	Improvements
	Bug Fixes

	1.5.0-alpha1
	New Features
	Improvements
	Bug Fixes

	1.4.0
	Improvements
	Bug Fixes
	misc

	1.4.0-rc5
	Improvements
	Bug Fixes

	1.4.0-rc4
	New Features
	Improvements
	Bug Fixes

	1.4.0-rc3
	Improvements
	Bug Fixes

	1.4.0-rc2
	New Features
	Improvements
	misc

	1.4.0-rc1
	New Features
	Improvements
	Bug Fixes

	1.4.0-beta1
	New Features
	Improvements
	Bug Fixes

	1.4.0-alpha2
	New Features
	Improvements
	Bug Fixes

	1.4.0-alpha1
	New Features
	Improvements
	Bug Fixes

	1.3.3
	New Features
	Improvements
	Bug Fixes

	1.3.2
	Bug Fixes

	1.3.1
	New Features
	Improvements
	Bug Fixes

	1.3.0
	New Features
	Improvements
	Bug Fixes
	Removals

	1.2.1
	New Features
	Improvements
	Bug Fixes

	1.2.0
	New Features
	Improvements
	Bug Fixes
	Removals
	misc

	1.1.0
	Improvements
	Bug fixes

	1.1.0-beta2
	New features
	Improvements
	Bug fixes

	1.1.0-beta1
	New features
	Improvements
	Bug fixes

	1.0.0
	Improvements
	Bug fixes

	1.0.0-beta1
	New features
	Improvements
	Bug fixes

	1.0.0-alpha2
	New features
	Bug fixes
	Web interface
	Various documentation updates and minor cleanups:

	1.0.0-alpha1

	Upgrade Guide
	1.8.x to 1.9.0
	1.7.x to 1.8.0
	1.7.0 to 1.7.1
	1.6.x to 1.7.0
	1.5.x to 1.6.0
	1.4.x to 1.5.0
	1.3.x to 1.4.0
	1.3.2 to 1.3.3
	1.2.x to 1.3.x
	1.1.0 to 1.2.0

	Security Advisories
	PowerDNS Security Advisory 2017-01 for dnsdist: Crafted backend responses can cause a denial of service
	PowerDNS Security Advisory 2017-02 for dnsdist: Alteration of ACLs via API authentication bypass
	PowerDNS Security Advisory for dnsdist 2018-08: Record smuggling when adding ECS or XPF

	PowerDNS Security Policy
	YesWeHack
	Disclosure Policy

	Glossary
	PowerDNS/dnsdist license
	End of life statements
	HTTP Routing Table
	Index

